
Georgetown University Law Center Georgetown University Law Center 

Scholarship @ GEORGETOWN LAW Scholarship @ GEORGETOWN LAW 

2001 

Patent Scope and Innovation in the Software Industry Patent Scope and Innovation in the Software Industry 

Julie E. Cohen 
Georgetown University Law Center, jec@law.georgetown.edu 

Mark A. Lemley 
University of California at Berkeley School of Law 

 

Copyright 2001 by the California Law Review, Inc. Reprinted from California Law Review, Vol. 89, 

by permission of the Regents of the University of California. 

 

This paper can be downloaded free of charge from: 

https:/ /scholarship.law .georgetown.edu/facpub/343 

 

89 Cal. L. Rev. 1-57 (2001) 

This open-access article is brought to you by the Georgetown Law Library. Posted with permission of the author . 
Follow this and additional works at: https:/ /scholarship.law .georgetown.edu/facpub 

 Part of the Intellectual Property Law Commons 



GEORGETOWN LAW 
Faculty Publications 

 
 

 
 
 

April 2010 
 
 

Patent Scope and Innovation in the 
Software Industry* 

 
 

89 Cal. L. Rev. 1-57 (2001) 
                                          
 
        Julie E. Cohen        Mark A. Lemley 
               Professor of Law                Professor of Law 
Georgetown University Law Center             University of California at Berkeley School of Law 
        jec@law.georgetown.edu 

 
 

This paper can be downloaded without charge from: 
Scholarly Commons:  http://scholarship.law.georgetown.edu/facpub/343/ 

 
Posted with permission of the author 

* Copyright 2001 by the California Law Review, Inc. Reprinted from California Law Review, Vol. 89, by 
permission of the Regents of the University of California. 



California Law Review
VOL. 89 JANuARY 2001 No. 1

Copyright © 2001 by California Law Review, Inc.

Patent Scope and Innovation in the
Software Industry

Julie E. Cohent
Mark A. Lemleyj

TABLE OF CONTENTS

Introduction .............................................................................................. 4
I. Software Patents: History, Practice, and Theory ............................... 7

A. History: The Section 101 Patentability Debate ......................... 8
B. Practice: Anything Goes? ................................ . .. . .. . . . .. . . .. . . .. . . .. . ..... I 1
C. Theory: Software Patents and the "Prospect" Theory of

Patent Scope .................................................................................. 14
II. Reverse Engineering Patented Software ............................................ 16

A. Software-Specific Barriers to Lawful Reverse Engineering of
Patented Inventions .................................................................. 17

B. Innovation and Reverse Engineering: An Industry-Based
A nalysis .................................................................................... 21

Copyright © 2001, Julie Cohen and Mark Lemley.
f Associate Professor of Law, Georgetown University Law Center.
: Professor of Law, University of California at Berkeley, School of Law (Boalt Hall); of

counsel, Fish & Richardson P.C. We would like to thank Fred Abbott, Erv Basinski, Dan Burk, Chris
Byrne, Tom Cotter, Alan Durham, Richard Gruner, Rose Hagan, Paul Heald, Dennis Kariala, Ronald
Mann, David McGowan, Peter Menell, Rob Merges, Mike Meurer, Tyler Ochoa, Margaret Jane Radin,
Arti Rai, Pam Samuelson, Jay Thomas, Polk Wagner, David Welkowitz, participants in the 27th
Annual Telecommunications Policy Research Conference, participants in faculty workshops at the
Boston University School of Law and Whittier Law School for their comments on earlier versions, and
Mitzi Chang and Elizabeth Monkus for research assistance. Need we mention that the ideas and
mistakes contained herein are ours alone, and are not attributable to anyone else?

Permission is hereby granted for copies of this Article to be made and distributed for educational
use, provided that: (i) copies are distributed at or below cost; (ii) the authors and the California Law
Review are identified; and (iii) proper notice of copyright is affixed.

HeinOnline -- 89 Cal. L. Rev. 1 2001



CALIFORNIA LA W REVIEW

1. Access to the Patented Invention ....................................... 23
2. Access to Unpatented Components ................................... 25
3. The Intellectual Property Balance ...................................... 26
4. Litigation-Related Uses ...................................................... 28

C. Creating a Right to Reverse Engineer Patented Software ........ 29
1. Experimental Use ............................................................. 29
2. First Sale, Implied License, and Exhaustion ..................... 30
3. Patent Misuse ..................................................................... 35
4. New Legislation ................................................................ 36

III. Designing Around Existing Software Patents ................................. 37
A. Systemic Biases Toward a Broad Range of Equivalents ...... 39

1. Incremental, Modular Innovation and Design for
Interoperability .................................................................. 40

2. Undocumented Prior Art ................................................... 42
3. The Rapid Pace of Change ................................................ 45
4. Equivalence and Text ........................................................ 47

B. Innovation and Equivalence: An Industry-Based Analysis .......... 50
C. Tailoring the Doctrine of Equivalents to the Software Industry ... 53

Conclusion ............................................................................................. 56

[Vol. 89:1

HeinOnline -- 89 Cal. L. Rev. 2 2001



PATENT SCOPE AND INNOVATION

Patent Scope and Innovation in the
Software Industry

Julie E. Cohen
Mark A. Lemley

Software patents have received a great deal of attention in the academic
literature. Unfortunately, most of that attention has been devoted to the
problem of whether software is or should be patentable subject matter.
With roughly eighty thousand software patents already issued, and the
Federal Circuit endorsing patentability without qualification, those ques-
tions are for the history books. The more pressing questions now concern
the scope to be accorded software patents. In this Article, we examine the
implications of some traditional patent law doctrines for innovation in the
software industry. We argue that patent law needs some refinement if it is
to promote rather than impede the growth of this new market, which is
characterized by rapid sequential innovation, reuse and re-combination of
components, and strong network effects that privilege interoperable com-
ponents and products. In particular, we argue for two sorts of new rules in
software patent cases.

First, we advocate a limited right to reverse engineer patented computer
programs in order to gain access to and study those programs and to du-
plicate their unprotected elements. Such a right is firmly established in
copyright law, and seems unexceptional as a policy matter even in patent
law. But because patent law contains no fair use or reverse engineering
exemption, patentees could use the grant of rights covering a single com-
ponent of a complex program to prevent any "making" or "using" of the
program as a whole, including those temporary uses needed in reverse en-
gineering. While patent law does contain doctrines of "experimental use"
and "exhaustion, " it is not clear that those doctrines will protect legitimate
reverse engineering efforts. We suggest that if these doctrines cannot be
read broadly enough to establish such a right, Congress should create a
limited right to reverse engineer software containing patented components
for research purposes.

Second, we argue that in light of the special nature of innovation within the
softivare industry, courts should apply the doctrine of equivalents narrowly
in infringement cases. The doctrine of equivalents allows a finding of

2001]

HeinOnline -- 89 Cal. L. Rev. 3 2001



CALIFORNIA LA W REVIEW

infringement even when the accused product does not literally satisfy each
element of the patent, ifthere is substantial equivalence as to each element.
The test of equivalence is the known interchangeability of claimed and
accused elements at the time of (alleged) infringement. A number offactors
unique to software and the software industry-a culture of reuse and in-
cremental improvement, a lack of reliance on systems offormal documen-
tation used in other fields, the short effective life of software innovations,
and the inherent plasticity of code-severely complicate post hoc assess-
ments of the "known interchangeability" of software elements. A standard
for equivalence of code elements that ignores these factors risks stifling
legitimate, successful efforts to design around existing software patents. To
avoid this danger, courts should construe software claims narrowly, and
should refuse a finding of equivalence if the accused element is
"interchangeable" with prior art that should have narrowed the original
patent, or if the accused improvement is too many generations removed
from the original invention.

INTRODUCTION

Software patents have received a great deal of attention in the aca-
demic literature. Unfortunately, most of that attention has been devoted to
the problem of whether software is or should be patentable subject matter.
With some eighty thousand software patents already issued,' the Federal
Circuit endorsing patentability without qualification,2 and the Supreme
Court assiduously avoiding the question, software patentability is a matter
for the history books. The more pressing questions now concern the criteria
for issuance and the scope to be accorded issued software patents. And
while public attention of late has been captured by so-called Internet busi-
ness method patents, the overwhelming majority of such patents are in fact
patents for software.3 Thus, determining the scope of software patents will
take us a long way towards determining what to do in practice with Internet
business method patents as well.

As Part I of this Article describes, with software patents now being
issued in large numbers, the patent system plays a newly prominent role in

1. Infra notes 33-38 and accompanying text.
2. Infra Part I.A.
3. Indeed, this was true of the prototypical business method patent, the one at issue in State

Street Bank & Trust v. Signature Financial Group, Inc., 149 F.3d 1368 (Fed. Cir. 1998). In State Street,
the Federal Circuit eliminated the long-standing rule against patenting non-technological "business
methods." See id. The invention deemed patentable was a hub-and-spoke method of mutual fund
accounting implemented in software. That ruling led to a host of patents and patent applications on
various business ideas, many of which also are implemented in software and relate to the Interet and
electronic commerce. See, e.g., Robert P. Merges, As Many as Six Impossible Patents Before
Breakfast: Property Rightsfor Business Concepts and Patent System Reform, 14 BERKELEY TECH. LJ.
577 (1999); Philip E. Ross, Patently Absurd: Technology and Gamesmanship Have Overwhelmed the
US. Patent Office. How to Fix It?, FoRBEs, May 29, 2000.

[Vol. 89:1

HeinOnline -- 89 Cal. L. Rev. 4 2001



2001] PA TENT SCOPE AND IA'O VA TION 5

shaping the development of the software industry. The consequences of
this shift are worth examining more closely. Institutional mechanisms for
encouraging innovation are a crucial determinant of the rate and nature of
"progress" in technical fields.4 Generally speaking, both economic theory
and practical experience suggest that the availability of patents for software
promotes innovation by supplying (additional) incentives to inventors.' Yet
it is also possible that the patent system may constrain innovation if it
draws protection too broadly.

Part I notes a convergence between the Patent and Trademark Office's
[PTO] relatively unconstrained practice of issuing software patents and a
strand of the theoretical literature which suggests that the optimal patent
scope is broad. In the balance of the Article, we consider whether that re-
sult is the right one for the software industry. In particular, we examine the
implications for software innovation of some traditional patent law doc-
trines affecting patent scope. We conclude that broad scope is not optimal,
and that patent law needs refinement if it is to promote rather than impede
the growth of this industry, which is characterized by rapid sequential in-
novation, reuse and recombination of components, and strong network

4. For examinations of the variety of institutional mechanisms available, see generally Brett
Frischmann, Innovation and Institutions: Rethinking the Economics of U.S. Science and Technology
Policy, 24 VT. L. REv. 347 (2000); Robert P. Merges, Intellectual Property Rights and Collective
Rights Organizations: Institutions Facilitating Transactions in Intellectual Property Rights, 84 CALn'.
L. REv. 1293 (1996); Arti Kaur Rai, Regulating Scientific Research: Intellectual Property Rights and
the Norms of Science, 94 Nw. U. L. REv. 77 (1999).

5. On the "reward theory" of patent protection, see THE SuacoMI. ON PATENTS, TRADEMARKS,
AND COPYRIGHTS OF THE SENATE COMM. ON THE JuDIcIARY, 85TH CONG., AN EcONomIc REvIEW OF
THE PATENT SYSrEm (Comm. Print 1958). The extent to which the patent system is actually necessary
to induce innovation that would not otherwise occur is an unanswered, and perhaps unanswerable,
empirical question. See generally id.; George L. Priest, What Economists Can Tell Lawyers About
Intellectual Property, 8 RES. L. & ECON. 19 (1986); cf. A. Samuel Oddi, Beyond
Obviousness: Invention Protection in the Twenty-First Century, 38 Am. U. L. REv. 1097 (1989)
(arguing that patents should be issued only for major innovations). But see Arnold Plant, The Economic
Theory Concerning Patents for Inventions, 1 ECONOMICA 30 (1934) (arguing that the availability of
patent protection may yield supraoptimal levels of invention, at the expense of other socially valuable
activity).

The bewildering variety of software innovations generated in the years before software was
considered patentable suggests that for software, at least, patent protection may not be as necessary as
the reward theory assumes. The question is complicated, however, by the availability of copyright
protection for software during that period, and by uncertainty over both the scope of copyright
protection and the degree of overlap between the copyright and patent models of protection. For
discussion of that overlap, see, for example, Julie E. Cohen, Reverse Engineering and the Rise of
Electronic Vigilantism: Intellectual Property Implications of "Lock-Out" Programs, 68 S. CAL. L.
REv. 1091 (1995); Dennis S. Karjala, The Relative Roles of Patent and Copyright in the Protection of
Computer Programs, 17 J. MARSHALL J. CoxpurER & INFO. L. 41 (1998); A. Samuel Oddi, An
Uneasier Case for Copyright Than for Patent Protection of Computer Programs, 72 NEB. L. REv. 351
(1993); J.H. Reichman, Legal Hybrids Between the Patent and Copyright Paradigms, 94 COLUNM. L.
REv. 2432 (1994); Pamela Samuelson et al., A Manifesto Concerning the Legal Protection of Computer
Programs, 94 CoLulm. L. REv. 2308 (1994).

HeinOnline -- 89 Cal. L. Rev. 5 2001



CALIFORNIA LAWREVIEW

effects that privilege interoperable components and products. Accordingly,
we argue for two sorts of rules in software patent cases.

In Part II, we advocate a limited right to reverse engineer patented
computer programs to permit study of those programs and duplication of
their unprotected elements.6 Such a right is firmly established in copyright
law, and seems unexceptional as a policy matter even in patent law. But
because patent law contains no fair use or reverse engineering exemption,
patentees could use the grant of rights covering a single component of a
complex program to prevent any "making" or "using" of the program as a
whole, including those temporary uses required for reverse engineering.
Indeed, the Sony v. Connectix and Sony v. Bleem cases pending in the
Ninth Circuit reflect an effort by a patent and copyright owner to do just
that.7 While patent law does contain doctrines of "experimental use" and
"exhaustion," it is not clear that those doctrines will protect legitimate re-
verse engineering efforts. We suggest that if these doctrines cannot be read
broadly enough to establish such a right, Congress should create a limited
right to reverse engineer software containing patented components for
research purposes.

In Part III, we argue that in light of the special nature of innovation
within the software industry, courts adjudicating software cases should use
caution to avoid applying the doctrine of equivalents too broadly. The doc-
trine of equivalents allows a finding of infringement even when the
accused product does not literally satisfy each element of the patent, as
long as there is substantial equivalence as to each element.' One test of
equivalence is the "known interchangeability" of the claimed and accused
elements at the time of alleged infringement. However, several factors
unique to software and the software industry complicate post hoc assess-
ments of "known interchangeability." The software industry is character-
ized by a culture of reuse and incremental improvement, a lack of reliance
on systems of formal documentation used in other technical fields, the
short effective life of software innovations, and the inherent plasticity of
microcode. A standard for equivalence of code elements that ignores these
factors risks stifling legitimate efforts to design around existing software
patents. To avoid this danger, courts should beware of construing software
claims too broadly, and should refuse a finding of equivalence if the
accused element is "interchangeable" with prior art that should have

6. "Reverse engineering" refers to the process of working backwards from a finished product to
discover how it was made. For discussion of the unique technical considerations that attend the reverse
engineering of software, see infra notes 63-65 and accompanying text.

7. See infra notes 72-73 (discussing the Sony cases).
8. The scope of a patent is defined by its claims, which set out each element of the invention.

Each element of the patent claim must be present in the accused device in order to find literal
infringement. London v. Carson Pirie Scott & Co., 946 F.2d 1534, 1538-39 (Fed. Cir. 1991).

[Vol. 89:1

HeinOnline -- 89 Cal. L. Rev. 6 2001



PA TENT SCOPE AND INNOVATION

narrowed the original patent, or if the accused improvement is too many
generations removed from the original invention.

Parts II and III of our paper are connected by a single common
theme: a focus on the process of improvement and sequential innovation
as it actually occurs in the software industry. We begin with reverse engi-
neering, despite its ontological status as a "defense" in intellectual property
litigation, because that is where many improvers begin. We then discuss
what improvers do with the information they obtain and how those im-
provements are treated in the patent infringement context. We think this
industry focus is central to a nuanced and pro-competitive application of
patent law. Too often courts and commentators have focused narrowly on
one doctrinal issue to the exclusion of others that interact with it.9

Some might object that our suggestions are "new" rules for the soft-
ware industry that have no place within a patent system that is generalist by
design. This issue, however, is largely a question of semantics. Resolution
of patent disputes requires reference to the state of knowledge and the level
of ordinary skill in the particular art under consideration.10 Some industry-
specific variation in the application of general legal rules is both inevitable
and, we believe, appropriate. Further, our proposals are designed to restore
parity between software patents and other sorts of patents, by giving soft-
ware engineers the same sorts of rights and expectations that exist in other
industries. We do not intend to propose a sui generis law of software
patents. Rather, we think it is both possible and desirable to interpret
existing law to achieve the results we suggest.

I
SOFTWARE PATENTS: HISTORY, PRACTICE, AND THEORY1'

Software patents have a convoluted history. Within the legal system,
the past three decades have witnessed an about-face on the question of
software's eligibility for patent protection. As we recount in Part I.A, soft-
ware's status as patentable subject matter was first doubted, then grudg-
ingly admitted, and finally embraced. However, there has been
considerable divergence between the "law on the books" and the law in
action; in fact, approval of software patent applications was routine
practice even before the courts recognized it.

Part I.B argues that the patentability debate has become a costly dis-
traction from more practical, and increasingly pressing, questions about

9. Thus, to take just one example, the long debate about whether software was or should be
patentable subject matter obscured the host of other legal issues that affect the validity and legal and
competitive effects of software patents. Infra notes 176-185 and accompanying text (discussing the
problem).

10. E.g., 35 U.S.C. §§ 102, 103 (1994) (rules dependent on the level of skill in the industry).
11. The reader familiar with the law of software patents may wish to skip directly to Part II.

2001]

HeinOnline -- 89 Cal. L. Rev. 7 2001



CALIFORNIA LAW REVIEW

how the patent system should treat software. In Part I.C, we describe one
strand of theoretical literature which antedates software patents, and which
concludes that broad patents are economically optimal. In the balance of
this Article, we conclude that as a result of certain characteristics of soft-
ware and of research and development patterns within the software indus-
try, issued software patents may enjoy very broad scope. The rapid rise of
software patents thus affords an opportunity to test an important theoretical
model, and to consider whether it is the right one for this industry. For a
variety of reasons discussed in Parts II and III, we contend that it is not,
and that courts should be careful to restrict the scope of software patents so
that innovation will not suffer.

A. History: The Section 101 Patentability Debate

Today, it seems fairly settled that software-related inventions fall
within the class of innovations described in section 101 of the Patent Act as
eligible for patent protection. Thirty years ago, though, that conclusion was
by no means foregone. Although the statute authorizes the patenting of any
new and useful process or machine,"2 long-standing judicially developed
doctrines prohibited patent protection for mathematical formulae and
mental processes. The courts held that "processes" describing existing
natural laws (whether as basic as 2 + 2 = 4 or as complex as E = mc 2) or
reciting steps performable by the human mind do not fall within the cate-
gory of "useful arts." 3 Mathematical algorithms (not just formulae) were
declared non-patentable subject matter in an early Supreme Court case,
Gottschalk v. Benson. 4 Throughout the 1970s, courts generally rejected
software patent applications on the grounds that software was really just a
concatenation of unpatentable algorithms. 5

12. 35 U.S.C. § 101 (1994) ("Whoever invents or discovers any new and useful process,
machine, manufacture, or composition of matter... may obtain a patent therefor ... ").

13. E.g., Funk Bros. Seed Co. v. Kalo Inoculant Co., 333 U.S. 127, 130 (1947) ("[P]atents cannot
issue for the discovery of the phenomena of nature .... [These] are part of the storehouse of
knowledge of all men." (citation omitted)); In re Shao Wen Yuan, 188 F.2d 377, 380 (C.C.P.A. 1951);
Halliburton Oil Well Cementing Co. v. Walker, 146 F.2d 817, 821 (9th Cir. 1944), rev'd on other
grounds, 329 U.S. I (1946); Don Lee, Inc. v. Walker, 61 F.2d 58, 67 (9th Cir. 1932). See generally I
DONALD S. CHISUM, CaISUM ON PATENTS § 1.03 (2000) (discussing the scope and boundaries of the
statutory class of processes). The Patent Clause of the Constitution authorizes the grant of exclusive
rights "to promote the Progress of... useful Arts." U.S. CONST. art. I, § 8, cl. 8. The term "useful arts"
has been construed to encompass "the realm of technological and industrial improvements." Pamela
Samuelson, Benson Revisited: The Case Against Patent Protection for Algorithms and Other
Computer Program-Related Inventions, 39 EMORY L.J. 1025, 1033 n.24 (1990); see also id. at 1112; 1
CHISUM, supra, at § 1.01. As Professor Samuelson details, however, no coherent, satisfactory
explanation or model has been offered for the exclusion of mathematical formulae and mental
processes. See Samuelson, supra, at 1036 n.34.

14. 409 U.S. 63 (1972).
15. This history is well traced in Samuelson, supra note 13.

[Vol. 89:1

HeinOnline -- 89 Cal. L. Rev. 8 2001



PA TENT SCOPE AND INNOVATION

With Benson apparently precluding the patenting of "pure" software,
patent applicants in the 1970s shifted their focus to patenting mechanical
devices and processes that happened to include computer programs. The
prototypical application in this category was for a "new" machine or
process in a familiar art, in which the only point of novelty was the use of a
computer program to run the machine or implement the process. Six years
after Benson, in Parker v. Flook,16 the Court rejected an attempt to patent a
computerized method for continuously recalculating the "alarm limit"
during a chemical conversion process. The Flook Court noted that the only
novel feature of the invention was a computer program, and that the
program itself was not patentable subject matter.17

Three years later, however, the Court changed its view. In Diamond v.
Diehr,'8 it held that a process for continuously monitoring the temperature
inside a synthetic rubber mold, using a computer and the well-known
Arrhenius equation for measuring cure time as a function of temperature
and other variables, was patentable subject matter. Central to the Court's
decision was that the inventor did not claim all rights to future uses of the
Arrhenius equation but only to the particular application that he had in-
vented in the context of an "otherwise statutory" industrial process.' 9 De-
spite this fact, and the Court's language insisting on significant
"post-solution activity" outside the computer program,20 Diehr seems
difficult to distinguish from Flook.

The Diehr decision and its appellate progeny created what might be
termed "the doctrine of the magic words." Under this approach, software
was patentable subject matter, but only if the applicant recited the magic
words and pretended that she was patenting something else entirely. Dur-
ing the 1980s and early 1990s, knowledgeable patent attorneys did exactly
that, claiming software inventions as hardware devices, pizza ovens, and
other "machines." As developed by the PTO and the Federal Circuit prior
to 1994, the "otherwise statutory process or apparatus" limitation was not
much of a limit at all.2' Nearly any physical element or step would suffice
to render statutory a claim that recited a mathematical or "mental process"
algorithm, even if the physical element or step was well known or an in-
dustry standard and the mathematical algorithm was the only novel
component of the invention.

16. 437 U.S. 584 (1978).
17. Id. at 589-9 1. The Court reasoned that if it ignored the mathematical algorithm the applicant

had developed for updating the alarm limit, the claimed invention contained nothing new or inventive.
18. 450 U.S. 175 (1981).
19. Id. at 187.
20. Id. at215.
21. Although derived from the Court's opinion in Diehr, this test became known as the Freeman-

Walter-Abele test after the three appellate cases that elaborated it in greater detail. In re Freeman, 573
F.2d 1237 (C.C.P.A. 1978); In re Walter, 618 F.2d 758 (C.C.P.A. 1980); In re Abele, 684 F.2d 902
(C.C.P.A. 1982).

2001]

HeinOnline -- 89 Cal. L. Rev. 9 2001



CALIFORNIA L4 WREVIEW

In 1994, the en banc Federal Circuit decided In re Alappat, opening a
new era in software patent protection.2 The decision established that the
"otherwise statutory process or apparatus" requirement may be satisfied by
the simple expedient of drafting claims to include a general purpose com-
puter or standard hardware or memory element that would be necessary for
any useful application of the algorithm. The Alappat court reasoned that "a
general purpose computer in effect becomes a special purpose computer
once it is programmed to perform particular functions pursuant to
instructions from program software."23 Accordingly, the court ruled, it need
not even perform the inquiry required by the Freeman-Walter-Abele line of
cases. After Alappat, companies that wanted to patent software no longer
needed to pretend they were patenting something else. They needed only to
define their claims in terms of a computer program implemented in a
machine.

The reasoning of Alappat, however, did not appear to encompass
claims reading on computer programs themselves, as opposed to programs
implemented in a machine or system. That obstacle to computer-related
patent claims fell in 1995, when IBM appealed the PTO's rejection of a
claim to "computer programs embodied in a tangible medium, such as
floppy diskettes" to the Federal Circuit.24 While the appeal was pending,
the PTO decided not to oppose the claim. Shortly thereafter, it issued new
examining guidelines for software patents that directed examiners to
approve such claims.2

The remaining legal barriers to patenting "pure" software dissolved
completely in 1998 when the Federal Circuit decided State Street Bank &
Trust v. Signature Financial Group.26 There, the court reversed a district
court's rejection of a patent for a software-implemented financial system
that automatically calculated and allocated profits from a joint stock
account. The court concluded that the Freeman- Walter-Abele test "has
little, if any, applicability to determining the presence of statutory subject
matter."2 7 Instead, it reasoned, even physical structure was unnecessary, so
long as a process or idea was useful:

22. 33 F.3d 1526 (Fed. Cir. 1994) (en banc).
23. Id. at 1545. As a philosophical matter, this approach is troubling. As the dissent explained,

"[w]hether or not subject matter is a 'new machine' within § 101 is precisely the same question as
whether or not the subject matter satisfies the § 101 analysis .... [A] player piano playing Chopin's
scales does not become a 'new machine' when it spins a roll to play Brahms' lullaby." Id. at 1566-67
(Archer, C.J., concurring in part and dissenting in part) (citations omitted). On the other hand, if the
"machine" in question consists of the hardware combined with the software, the combination is
certainly new. Cf Alan L. Durham, Useful Arts in the Information Age, 1999 B.Y.U. L. REv. 1419,
1519-20 (discussing the "new machine" approach of Alappat).

24. In re Beauregard, 53 F.3d 1583, 1584 (Fed. Cir. 1995).
25. United States Patent and Trademark Office, Examination Guidelines for Computer-

Implemented Inventions, 61 Fed. Reg. 7478, 7479-80 (Jan. 1996).
26. 149 F.3d 1368 (Fed. Cir. 1998), cert. Denied, 525 U.S. 1093 (1999).
27. Id. at 1374.

[Vol. 89:1

HeinOnline -- 89 Cal. L. Rev. 10 2001



PA TENT SCOPE AND INNOVATION

Today, we hold that the transformation of data, representing
discrete dollar amounts, by a machine through a series of
mathematical calculations into a final share price, constitutes a
practical application of a mathematical algorithm, formula, or
calculation, because it produces "a useful, concrete and tangible
result"--a final share price momentarily fixed for recording and
reporting purposes and even accepted and relied upon by
regulatory authorities and in subsequent trades.28

The Federal Circuit affirmed this reasoning in AT&T v. Excel
Communications.29 There, the court upheld as patentable subject matter
claims to a method for "generating a message record for an interexchange
call" and recording to whom the call should be billed.3" The court applied
State Street's "useful, concrete and tangible result" test and concluded that
the generation of billing records was clearly useful." Noting that physical
transformation is only one of several possible ways to bring about a useful
result, the court specifically rejected the argument that a patentable
software claim must have physical structure associated with it. 2

The end result of this history (and more than a quarter century of de-
bate) is to leave the question of patentable subject matter very much where
it would have been if Benson had come out the other way. As we will
show, however, the protracted debate has nonetheless produced significant,
though unintended, consequences for the patent system.

B. Practice: Anything Goes?

One might suppose that as a result of the long debate over software's
eligibility for patent protection, software patents have only recently begun
to issue in large numbers. Nothing could be further from the truth.
Gradually, behind the scenes, and without the participation of the Supreme
Court or even the Federal Circuit, software inventions of all types have
been patented for some time. Close to one hundred thousand software or
software-related patents are now in force in the United States, and several
thousand more are being issued every year.33 Numerous patents issued in

28. Id. at 1373.
29. 172 F.3d 1352 (Fed. Cir. 1999). On remand, the district court held the patent invalid under

§ 102. AT&T Corp. v. Excel Communications, 52 U.S.P.Q.2d 1865 (D. Del. 1999).
30. 172 F.3d at 1354.
31. Id. at 1361.
32. Id.
33. How many software patents exist depends in part on how one defines a software patent.

Based on trends though mid-1998, Greg Aharonian projected that there would be over eighty thousand
software patents in force as of early 2000, approximately forty thousand of which were issued by the
end of 1995. Internet Patent News Service, at http://swpat.ffii.org/penmi/bmwi-20000518/
aharonian/stat-1998.txt (visited June 16, 2000). John Allison and Mark Lemley estimate that during a
two-year period in the late 1990s, the PTO issued approximately eighteen thousand software patents.
John R. Allison & Mark A. Lemley, Who's Patenting What? An Empirical Exploration of Patent
Prosecution, 53 VAXm. L. REv. (forthcoming 2000). These statistics suggest that the total number of

2001]

HeinOnline -- 89 Cal. L. Rev. 11 2001



CALIFORNIA LA W REVIEW

the 1980s and early 1990s cover pure data structures, 34 methods for per-
forming calculations in a data processor,35 data compression algorithms,36

and software-based encryption algorithms, 37 despite the then-questionable
statutory nature of such claims. Now, after State Street and AT&T, patents
are being issued for software without any limitation as to tangible form,
and for "propagated signals"--in effect, "signals" claims directed to "a
manufactured transient phenomenon, such as an electrical, optical, or
acoustical signal."3 Like it or not, software patents are here to stay.

The confused judicial history of software patents has had important
consequences for the present day, however. By focusing attention on the
patentable subject matter debate, and giving at least lip service to the idea
that software per se was unpatentable well into the 1990s, the court deci-
sions we have discussed created a climate in which the actual patenting of
software was largely ignored. As a result, the PTO only recently has begun
to grapple with the difficult problems of identifying, cataloging, and
searching for software prior art. In the meantime, tens of thousands of
software patents have passed through the system.

For a variety of reasons, it is reasonable to think that these software
patents have not been subject to the detailed examination for novelty and
nonobviousness that they require. First, because software was not thought
patentable on its own until recently, the PTO has only recently taken steps
to hire patent examiners qualified in computer software or related fields.3 9

During the 1980s and the early part of the 1990s, the flood of software pat-
ent applications was handled largely by people operating outside their area
of expertise. Abundant evidence indicates that the PTO has issued software

existing software patents is no less than fifty thousand, and probably much higher. For earlier estimates,
see Simson L. Garfinkel, Patently Absurd, WIRED, July 1994, at 104, 106 (stating that over twelve
thousand software patents had been issued by the end of 1993), and John T. Soma & B.F. Smith,
Software Trends: Who's Getting How Many of What? 1978 to 1987, 71 J. PAT. & TRADEMARK OFF.
Soc'Y 415, 419-21,428-32 (1989).

34. E.g., U.S. Patent No. 5,488,717 (issued Jan. 30, 1996); U.S. Patent No. 5,414,701 (issued
May 9, 1995).

35. E.g., U.S. Patent No. 5,386,375 (issued Jan. 31, 1995).
36. E.g., U.S. Patent No. 5,051,745 (issued Sept. 24, 1991).
37. E.g., U.S. Patent No. 5,530,752 (issued June 25, 1996); U.S. Patent No. 4,405,829 (issued

Sept. 20, 1983).
38. Jeffrey R. Keuster et al., A New Frontier in Patents: Patent Claims to Propagated Signals,

17 J. MARSHALL J. COMP. & INFO. L. 75, 75 (1998) (discussing propagated signal claims); Gregory A.
Stobbs, Patenting Propagated Data Signals: What Hath God Wrought?, IEEE CoMMuNICATIONS, July
2000, at 98 (same). Keith Witek offers an exhaustive guide to patenting computer programs and
algorithms in a number of different forms, along with some analysis of the advantages and
disadvantages of each, in Keith E. Witek, Developing a Comprehensive Software Claim Drafting
Strategy for U.S. Software Patents, I 1 BERKELEY TECH. LJ. 363 (1996).

39. See Scott Thurm, A Flood of Web Patents Stirs Dispute Over Tactics, WALL ST. J., Oct. 9,
1998, at BI (noting that the PTO did not hire its first examiner with a degree in computer science until
1995). Indeed, until recently computer scientists were not even eligible to sit for the patent bar. See
Cohen, supra note 5, at 1176.

[Vol. 89:1

HeinOnline -- 89 Cal. L. Rev. 12 2001



2001] PA TENT SCOPE AND INNOVATION

patents on a number of applications that did not meet the standard tests of
novelty and nonobviousness. 40 Second, for similar reasons, the PTO's clas-
sification system historically has not been equipped to handle software pat-
ents. As a result, software patents tended to be classified according to the
field in which the software will ultimately be used (say, pizza ovens),
rather than according to the nature of the software invention.41 This in turn
makes it much harder for examiners to find relevant prior art. Finally, prior
art in this particular industry may simply be difficult or, in some cases, im-
possible to find because of the nature of the software business. Unlike in-
ventions in more established engineering fields, most software inventions
are not described in published journals. Software innovations exist in the
source code of commercial products and services that are available to
customers. This source code is hard to catalog or search for ideas.42

Commentators similarly have tended to neglect the non-subject matter
issues associated with software patents. While there is a voluminous lit-
erature on whether software is (or should be) patentable subject matter,43

40. For anecdotes discussing some of the more extreme examples, see Garfinkel, supra note 33,
at 104; Merges, supra note 3, at 588-91.

41. See MaK A. LEMLEY Er AL., SoFnvARE AND INTER'Nr LAw 332 (2000).
42. As Julie Cohen has previously explained:

[lin the field of computers and computer programs, much that qualifies as prior art lies
outside the areas in which the PTO traditionally has looked-previously issued patents and
previous scholarly publications. Many new developments in computer programming are not
documented in scholarly publications at all. Some are simply incorporated into products and
placed on the market; others are discussed only in textbooks or user manuals that are not
available to examiners on line. In an area that relies so heavily on published, "official" prior
art, a rejection based on "common industry knowledge" that does not appear in the scholarly
literature is unlikely. Particularly where the examiner lacks a computer science background,
highly relevant prior art may simply be missed. In the case of the multimedia data retrieval
patent granted to Compton's New Media, industry criticism prompted the PTO to reexamine
the patent and ultimately to reject it because it did not represent a novel and nonobvious
advance over existing technology. However, it would be inefficient, and probably
impracticable, to reexamine every computer program-related patent, and the PTO is unlikely
to do so.

Cohen, supra note 5, at 1179 (footnotes omitted).
43. See generally, e.g., GREGORY A. STOBBS, SoFrnVARE PATENTS (1995); David S. Benyacar,

Mathematical Algorithm Patentability: Understanding the Cotfusion, 19 RUTGERS COMPUTER &
TECH. L.J. 129 (1993); Donald S. Chisum, The Patentability of Algorithms, 47 U. Prrr. L. Rav. 959
(1986); Irah H. Donner & J. Randall Beckers, Throwing Out Baby Benson with the Bath
Water: Proposing a New Test for Determining Statutory Subject Matter, 33 Jtmmmaacs J. 247
(1993); Lee Hollaar, Justice Douglas Was Right: The Need For Congressional Action On Software
Patents, 24 AIPLA Q.J. 283 (1996); Allen Newell, The Models Are Broken, The Models Are Broken!,
47 U. Prrr. L. REV. 1023 (1986); Oddi, supra note 5; Samuelson, supra note 13; Samuelson et al.,
supra note 5; Richard H. Stem, Tales from the Algorithm War: Benson to Iwahashi, It's D~ji Vu All
Over Again, 18 AIPLA Q.J. 371 (1991); Jur Strobos, Stalking the Elusive Patentable Software: Are
There Still Diehr or Was It Just a Flook?, 6 HaRv. J.L. & TECH. 363 (1993); John Swinson, Copyright
or Patent or Both: An Algorithmic Approach to Computer Software Protection, 5 H~av. J.L. & TECH.
145 (1991); Jonathan N. Geld, Note, General Does Not Mean Generic-Shedding Light on In re
Alappat, 4 Tax. INmTuE. PRoP. LJ. 71 (1995); Maximilian R. Peterson, Note, Now You See It, Now You
Don't: Was It a Patentable Machine or an Unpatentable "Algorithm"? On Principle and Expediency
in Current Patent Law Doctrines Relating to Computer-Related Inventions, 64 GEO. WASH. L. REv. 90
(1995). For a more recent approach focusing on constitutionality, but still in the context of patentable

HeinOnline -- 89 Cal. L. Rev. 13 2001



CALIFORNIA LA W REVIEW[

there is much less discussion of other patent validity issues. Only in the
latter part of the 1990s, as the Federal Circuit began to decide obviousness,
enablement, and best mode cases involving software, did we start to see
any significant discussion of these issues.'

Even less attention has been paid to questions of patent infringement
and defenses to infringement claims. Despite what is now a large body of
case law involving infringement of software patents, there is almost no
academic treatment of the problem." Only recently have commentators
begun to discuss potential defenses to software patent infringement suits. 46

Our goal in the balance of this Article is to address these problems in an
integrated way, with an eye towards the particular characteristics of the
software industry.

C. Theory: Software Patents and the "Prospect" Theory of Patent Scope

The rapid introduction of large numbers of software patents into the
patent system means that within a relatively short time, the background
conditions for software innovation have been substantially reconfigured.
Our analysis in Parts II and III suggests that because of the distinctive
characteristics of software, these patents also may be accorded unprece-
dented breadth. In economic terms, this regime for software patents would
resemble that outlined by Edmund Kitch in 1977, years before the question
of software patentability became a pressing one.47 The case of software
patents thus offers a unique opportunity to assess the utility of an
influential theoretical model.

Kitch based his "prospect" theory on an analogy to nineteenth-century
mining claims, which reserved for first-comers all rights to explore the de-
scribed terrain. Under the prospect theory of patent scope, issued patents
would operate as broad reservations of rights in the technical landscape. As
a result, patentees could credibly seek to exact royalties for nearly all im-
provements, whether literally infringing or not. Improvers, meanwhile,
would need to think twice before refusing such demands. To a greater

subject matter, see Robert A. Kreiss, Patent Protection for Computer Programs and Mathematical
Algorithms: The Constitutional Limitations on Patentable Subject Matter, 29 N.M. L. REv. 31 (1999).

44. See Cohen, supra note 5, at 1169-70; Alan P. Klein, Reinventing the Examination Process for
Patent Applications Covering Software-Related Inventions, 13 J. MARSHALL J. CoMPuTER & INFo. L.
231 (1995); Merges, supra note 3, at 588-605; Stem, supra note 43, at 395.

45. An exception is Richard H. Stem, On Defining the Concept of Infringement of Intellectual
Property Rights in Algorithms and Other Abstract Computer-Related Ideas, 23 AIPLA QJ. 401 (1995).
Even this early effort ends up focusing primarily on questions of patentable subject matter, however.

46. E.g., Maureen A. O'Rourke, Towards a Fair Use Defense in Patent Law, 100 COLum. L.
REv. 1177 (2000); Robert P. Merges, Who Owns the Charles River Bridge? Intellectual Property and
Competition in the Software Industry (2000) (on file with both authors).

47. Edmund W. Kitch, The Nature and Function of the Patent System, 20 J.L. & ECON. 265
(1977).

[Vol. 89:1

HeinOnline -- 89 Cal. L. Rev. 14 2001



PA TENT SCOPE AND INNOVATION

degree than ever before, second-comers would need permission to develop
and market their innovations.

Kitch argued that a prospect system would produce both a more effi-
cient allocation of resources to technical problems and greater overall prog-
ress. First, the system would prevent unnecessary decreases in social
wealth by minimizing wasted or redundant efforts by competing im-
provers.48 Since patents impose costs on society, a crucial assumption
underlying this argument is that the opportunity costs generated by com-
peting improvers exceed the deadweight losses that broad patents would
generate.49 Second, Kitch argued that a prospect system would maximize
social wealth by ensuring both optimal incentives to commercialize the
invention and the optimal allocation of licenses to develop improvements. 0

This argument is based on a set of assumptions about the rational behavior
of prospect owners and improvers. It assumes that owners can readily
identify, and would readily license, successful improvers; that the gains
from coordination would outweigh the costs of any strategic behavior by
owners and improvers; and that the initial allocation of stronger property
rights to the prospect owner would not adversely affect improvers' incen-
tives (or that an overall increase in productivity would outweigh any such
adverse effect).

The prospect theory of optimal patent scope has both adherents and
critics.5' We take no position here on the abstract merits of the theory, or
the question whether it might be sound as applied to some other class of
inventions. We believe, however, that a shift of this magnitude in the op-
eration of the patent law as applied to software should not go unremarked.
Before adopting, or acceding to, a "prospect" system for software patents,
it is important to ask whether such a system represents good policy for
software innovation.

Whether a prospect approach is the right one for the software industry
depends on whether Kitch's assumptions about relative costs and incentive
effects are right, given the conditions in that industry. What are the patterns
of innovation, and who are the innovators? How do technical constraints,
such as interoperability requirements, and economic constraints, such as
network effects, affect innovative patterns and practices? Is the class of

48. Id. at 276,278.
49. A patent prevents some who would otherwise want to use the patented invention at a

competitive price from doing so. This effect is termed "deadweight loss."
50. Kitch, supra note 47, at 276-78.
51. For adherents, see Mark F. Grady & Jay I. Alexander, Patent Law and Rent Dissipation, 78

VA. L. REv. 305 (1992). For critics, see Seth A. Cohen, To Innovate or Not to Innovate, That Is the
Question: The Functions, Failures, and Foibles of the Reward Function Theory of Patent Law in
Relation to Computer Software Plaforms, 5 MICH. TELECOMM. & TECH. L. RPv. (1998), at
http:llwwv.law.umich.edulmttlr/volfivelcohen.html; Mark A. Lemley, The Economics of Improvement
in Intellectual Property Law, 75 TEx. L. REv. 989 (1997); Robert P. Merges & Richard R. Nelson, On
the Complex Economics ofPatent Scope, 90 CoLuM. L. Rav. 839 (1990).

2001]

HeinOnline -- 89 Cal. L. Rev. 15 2001



CALIFORNIA LA WREVIEW [Vol. 89:1

potential inventors and improvers small and homogeneous or is it large and
heterogeneous? The remainder of this Article evaluates the effects of patent
doctrine on software innovation in light of these and other considerations.
In Parts II and III, we conclude that the particular characteristics of inno-
vation within the software industry militate against such an approach, and
that patents should be construed narrowly to avoid stifling progress.

II
REVERSE ENGINEERING PATENTED SoFrWARE

Courts and scholars have devoted an enormous amount of time and
effort to discussing the practice of reverse engineering computer soft-
ware. 2 That discussion has primarily taken place under the aegis of trade
secret and copyright laws because historically it was those laws that pro-
tected computer programs. 3 As we explain in Part II.A, although reverse

52. Reverse engineering of software, also called "decompilation," involves working backwards
from object code to produce a simulacrum of the original source code. Andrew Johnson-Laird,
Software Reverse Engineering in the Real World, 19 U. DAYTON L. REv. 843 (1994).

53. Virtually all recent court decisions have endorsed reverse engineering in some circumstances.
E.g., Sony Computer Entm't, Inc. v. Connectix Corp., 203 F.3d 596 (9th Cir. 2000); DSC
Communications Corp. v. DGI Techs., Inc., 81 F.3d 597, 601 (5th Cir. 1996); Bateman v. Mnemonics,
Inc., 79 F.3d 1532, 1539 n.18 (11th Cir. 1996); Lotus Dev. Corp. v. Borland Int'l, Inc. 49 F.3d 807,
817-18 (1st Cir. 1995) (Boudin, J., concurring); Atari Games Corp. v. Nintendo of America, Inc., 975
F.2d 832, 843-44 (Fed. Cir. 1992); Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1527-28 (9th
Cir. 1992); Vault Corp. v. Quaid Software Ltd., 847 F.2d 255, 270 (5th Cir. 1988); DSC
Communications Corp. v. Pulse Communications, Inc., 976 F. Supp. 359 (E.D. Va. 1997); Mitel, Inc. v.
Iqtel, Inc., 896 F. Supp. 1050 (D. Colo. 1995), aff'd on other grounds, 124 F.3d 1366 (10th Cir. 1997);
cf DSC Communications Corp. v. Pulse Communications, Inc., 170 F.3d 1354 (Fed. Cir. 1999)
(acknowledging the right to reverse engineer for some purposes, but holding it unjustified in that case).
On the other hand, a few early decisions rejected compatibility as a justification for copying. E.g.,
Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240 (3d Cir. 1983); Digital
Communications Ass'n v. Sofiklone Distrib. Corp., 659 F. Supp. 449 (N.D. Ga. 1987).

As with courts, the overwhelming majority of commentators endorse a right to reverse engineer
copyrighted software, at least for certain purposes. See, e.g., JONATHAN BAND & MAsANOBU KATOH,
INTERFACES ON TRIAL: INTELLECTUAL PROPERTY AND INTEROPERABILITY IN THE GLOBAL SOFW1ARE

INDUSTRY 167-226 (1995); Cohen, supra note 5; Lawrence D. Graham & Richard 0. Zerbe, Jr.,
Economically Efficient Treatment of Computer Software: Reverse Engineering, Protection, and
Disclosure, 22 RUTGERS COMPUTER & TECH. L.J. 61 (1996); Dennis S. Karjala, Copyright Protection
of Computer Software, Reverse Engineering, and Professor Miller, 19 U. DAYTON L. REv. 975, 1016-
18 (1994); Maureen A. O'Rourke, Drawing the Boundary Between Copyright and Contract: Copyright
Preemption of Software License Terms, 45 DUKE L.J. 479, 534 (1995); David A. Rice, Sega and
Beyond: A Beacon for Fair Use Analysis . .. At Least as Far as It Goes, 19 U. DAYTON L. REv. 1131,
1168 (1994); Pamela Samuelson, Fair Use for Computer Programs and Other Copyrightable Works in
Digital Form: The Implications of Sony, Galoob and Sega, 1 J. INTELL. PROP. L. 49 (1993); Tyler G.
Newby, Note, What's Fair Here Is Not Fair Everyivhere: Does the American Fair Use Doctrine
Violate International Copyright Law?, 51 STAN. L. REv. 1633, 1657-58 (1999); Timothy Teter, Note,
Merger and the Machines: An Analysis of the Pro-Compatibility Trend in Computer Software
Copyright Cases, 45 STAN. L. REv. 1061 (1993) (arguing that the value of computer programs depends
on interoperability); see also Pamela Samuelson & Suzanne Scotchmer, The Law and Economics of
Reverse Engineering (working paper 2000) (on file with authors) (suggesting that reverse engineering
should be legal when it promotes interoperability, but not when it permits free riding).

HeinOnline -- 89 Cal. L. Rev. 16 2001



PA TENT SCOPE AND INNOVATION

engineering of most types of patented inventions does not constitute in-
fringement, the reverse engineering of patented software may be an excep-
tion. Part l1.B discusses the reasons that the ability to reverse engineer
software are important to the overall health of the software industry. In Part
II.C, we explore the various ways in which courts or, as a last resort,
Congress, might correct this software-specific anomaly in the patent law's
reach.

54

A. Software-Specific Barriers to Lawful Reverse Engineering of Patented
Inventions

The intellectual property regimes that have traditionally protected
software permit reverse engineering. Under trade secret law, there is no
question that reverse engineering is legal.15 Indeed, the Supreme Court has
made it clear that the continued presence of a reverse engineering excep-
tion in trade secret law is necessary to avoid federal preemption. 6 Software
vendors who rely on trade secret law, then, must accept the possibility that
a consumer will reverse engineer their publicly-distributed object code and
discover the secrets contained in the program.

While there is no express statutory provision in the copyright laws
permitting reverse engineering, virtually every court to consider the issue
has concluded that there is a right to reverse engineer a copyrighted pro-
gram for at least some purposes. The source of that right is generally con-
sidered to be the fair use doctrine,57 though reverse engineering finds some

For a contrary view, see generally Anthony L. Clapes, Confessions of an Amicus
Curiae: Technophobia, Law and Creativity in the Digital Arts, 19 U. DAYTON L. REv. 903 (1994)
(contending that there should be no right to reverse engineer software), and Arthur R. Miller, Copyright
Protection for Computer Programs, Databases, and Computer-Generated Works: Is Anything New
Since CONTU?, 106 HAiv. L. REv. 977 (1993) (same).

For a discussion of the history of copyright protection of software, see generally Pamela
Samuelson, CONTU Revisited: The Case Against Copyright Protection for Computer Programs in
Machine-Readable Form, 1984 DuKE .J. 663 (1984).

54. There are other potential threats to the reverse engineering right, notably contract law, and
other areas in which reverse engineering is well established, notably the Semiconductor Chip Protection
Act, 17 U.S.C. § 906(a), and the Digital Millennium Copyright Act, 17 U.S.C. § 1201(t). These issues
are beyond the scope of this Article.

55. E.g., UNIF. TRADE SECRmS Acr § 1, cmt., 14 U.L.A. 438-39 (1990); Chicago Lock Co. v.
Fanberg, 676 F.2d 400 (9th Cir. 1982); RESTATEMENT OF ToRTs § 757 cmt. f (1939); RESTATEmENT

(THRn) UNFAIR CoMPETrroN § 43 (1995). The new federal criminal trade secrets statute, by contrast,
is silent on the subject of reverse engineering. 18 U.S.C.A. §§ 1831-1839 (1984 & Supp. 2000); see
also James H.A. Pooley et al., Understanding the Economic Espionage Act of 1996, 5 TEX. INTELL.
PROP. LJ. 177, 195-97 (1997) (arguing that the EEA might be construed to prohibit reverse
engineering, but that it should not be).

56. See Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141, 160 (1989); Kewanee Oil
Co. v. Bicron Corp., 416 U.S. 470 (1974) (trade secret law not preempted by patent because the reverse
engineering exception weakens trade secret law sufficiently that it does not interfere with patent
policy).

57. 17 U.S.C. § 107 (1994). For cases finding a right to reverse engineer under fair use
principles, see supra note 53.

2001]

HeinOnline -- 89 Cal. L. Rev. 17 2001



CALIFORNIA LA W REVIEW

support in the copyright misuse doctrine as well. 8 Courts have not deter-
mined that all reverse engineering is necessarily fair use; rather, as required
by general principles of fair use, they have engaged in a case-by-case in-
quiry into the purposes and effects of the defendant's conduct. Reverse
engineering has been held lawful primarily when used for laudable com-
petitive purposes, such as producing new works that compete with the
copyrighted original, producing products for downstream markets that are
compatible with the copyrighted original, and obtaining access to uncopy-
righted ideas, facts, or other material "locked up" within a copyrighted
work. 9 Because reverse engineering is costly, this legal rule does not fore-
close the possibility of a licensing arrangement. But it does prevent a
potential licenser from refusing to deal at all, and it imposes a natural upper
limit-the cost of reverse engineering-on what a licensee will be willing
to pay.

60

The introduction of patent protection for computer software threatens
to change the equation, however. The patent statute includes no express
provision allowing reverse engineering, nor is there any judicially-
developed exception akin to copyright's fair use doctrine that might permit
it. In theory, an express provision authorizing reverse engineering would be
superfluous if the enabling disclosures required to secure a patent were suf-
ficiently strong.6 1 However, the Federal Circuit does not require would-be
patentees of software inventions to disclose the implementing source code,
or indeed very much at all about their inventions.62 Accordingly, software

58. For a discussion of reverse engineering under principles of copyright misuse, see, for
example, Cohen, supra note 5; O'Rourke, supra note 53, at 550; James A.D. White, Misuse or Fair
Use? That Is the Software Copyright Question, 12 BERKELEY TECH. LJ. 251, 287-88 (1997). For
general background on the copyright misuse doctrine, see 2 PAUL GOLDSTEIN, CoPYIGTrr §§9:38-1 to
9:39 (2d ed. 1998); Marshall Leaffer, Engineering Competitive Policy and Copyright Misuse, 19 U.
DAYTON L. REv. 1087 (1994); and Mark A. Lemley, Beyond Preemption: The Law and Policy of
Intellectual Property Licensing, 87 CALIF. L. REv. 111, 151-58 (1999).

59. E.g., Sony Computer Entrn't, Inc. v. Connectix Corp., 203 F.3d 596 (9th Cir. 2000) (holding
that it was lawful to reverse engineer a video game system as an intermediate step to creating a
computer program that would allow games designed for that system to run on a PC); Bateman v.
Mnemonics, Inc., 79 F.3d 1532, 1539-40 n.18 (11th Cir. 1996) (endorsing the use of reverse
engineering to gain access to the unprotectable ideas in a program, as well as access to copyrighted
expression that might be used fairly); Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992)
(holding that reverse engineering was lawful where necessary to make an independently created video
game work with the plaintiff's game system); Atari Games Corp. v. Nintendo of America, Inc., 975
F.2d 832, 843-44 (Fed. Cir. 1992) (same); Vault Corp. v. Quaid Software Ltd., 847 F.2d 255 (5th Cir.
1988) (holding that reverse engineering was lawful when done in order to make a product that defeated
the plaintiff's copyrighted encryption product). But see DSC Communications Corp. v. Pulse
Communications, Inc., 170 F.3d 1354 (Fed. Cir. 1999) (rejecting a reverse engineering claim on the
particular facts before it).

60. See Samuelson & Scotchmer, supra note 53.
61. 35 U.S.C. § 112 (1994) (requiring patent applicants to describe their invention in such detail

as to enable others to make and use it).
62. Infra notes 85-87 and accompanying text.

[Vol. 89:1

HeinOnline -- 89 Cal. L. Rev. 18 2001



PATENT SCOPE AND IAWOVATION

patents present unique obstacles to consummation of the patent law's
traditional rights-for-disclosure bargain with the public.

The specific reverse engineering techniques commonly used for soft-
ware may also raise some infringement problems that are unique to soft-
ware. The definition of infringement in the patent statute is extremely
broad, encompassing anyone who "makes, uses, sells, offers to sell, or
imports" a patented product.63 Reverse engineering a patented computer
program by decompiling 4 it likely fits within this broad category of pro-
hibited conduct, at least where the program itself is claimed as an appara-
tus. Reverse engineering clearly constitutes a "use" of the patented
softvare, though owners of a particular copy of the program surely have
the right to use it.6 More significantly, decompilation may also constitute
"making" the patented program by generating a temporary yet functional
copy of it in RAM memory," and, in certain instances, a longer-term
(though still "intermediate") copy in more permanent memory.67 Those
copies probably constitute patent infringement, unless protected by some
defense.a

63. 35 U.S.C. § 271(a) (1994).
64. We are concerned in this Part primarily with reverse engineering by "decompilation," that is,

working backwards from the object code to construct a simulacrum of the source code. Other forms of

reverse engineering, such as "black-box" reverse engineering, which infers details about a program's
structure by testing its response to different inputs, do not involve making even temporary copies of the
program, though they certainly involve "using" it. Our subsequent references to "reverse engineering"
should be understood to refer to decompilation, not to black-box reverse engineering.

65. On the implied license and exhaustion doctrines that confer such a right, see infra Part II.C.2.
66. It seems clear that generating even temporary instantiations of a patented product "make" that

product for purposes of patent infringement. This principle is firmly established in the pharmaceutical

context, where courts have held that a patent is infringed when the patented product is generated by
metabolization of a different drug within the human body, and that chemical "intermediates"
temporarily generated in the course of making a final product infringe a patent covering those
intermediates. E.g., Hoechst-Roussel Pharm., Inc. v. Lehman, 109 F.3d 756, 759 (Fed. Cir. 1997);
Zenith Labs v. Bristol Myers Squibb, 19 F.3d 1418, 1422 (Fed. Cir. 1994); see also Keith E. Witek,

Sofvare Patent Infringement on the Internet and on Modern Computer System-Who Is Liable for
Damages?, 14 SANTA CLARA CompurER & HIGH TECH. L.J. 303 (1998) (arguing that since patent law
lacks a fixation requirement, even near-instantaneous duplication of patented software is a prohibited
"making" of the patented product).

Mahajan argues that reverse engineering for valid social purposes (compatability, competition or
study) may be necessary, and likely does not constitute patent infringement. Anthony J. Mahajan, Note,
Intellectual Property, Contracts, and Reverse Engineering After ProCD: A Proposed Compromise for
Computer Software, 67 FoRDHArm L. REv. 3297, 3317-18 (1999). However, we think Mahajan has
confused the result the law should reach with the result a court likely would reach by applying the
statute.

67. Thus, an article of manufacture claim to a particular program "encoded on a computer hard
drive" might be infringed by a reverse engineered copy temporarily stored on a computer hard drive.

68. One possible argument that the copies are noninfringing is that most copies made during the

reverse engineering process are nonfunctional, either because they are only partial or because they are
converted to assembly language or source code form. Theoretically, a source code readout of a
computer program could be considered a description of the invention, rather than a copy of the

invention itself. Nonetheless, decompilation also involves the generation of object code "copies" of the
patented program, at least in RAM.

2001]

HeinOnline -- 89 Cal. L. Rev. 19 2001



CALIFORNIA LA W REVIEW

We note here that "software patents" are not a unitary phenomenon;
thus, reverse engineering will not constitute infringement in all cases where
it is employed. Parsing the question of whether reverse engineering
"makes" a copy of the invention covered by a software patent requires,
first, that we specify what we mean by a software patent. As Dennis
Karjala has observed, software patents fall into two basic types: "pure"
software patents claiming improvements in programming or inventions
embodied wholly in a program, and "computer-related" inventions in
which the claim is for a machine or process that happens to use a computer
program.69 To date, the latter have been more common, but we are seeing
more and more pure software claims. An invention that includes software
only as one component in a larger machine or process is unlikely to be
"made" if the software component is reverse engineered. However, pure
software inventions can be made in their entirety during the reverse engi-
neering process. This is especially true of patents on inventions that are
embedded in a larger program, such as a patent on a "system" of sorting
data or dynamically linking items in a list.

Whether reverse engineering infringes a patent will further depend on
the way the claim is written. Software inventions can be claimed as a proc-
ess (a series of steps for accomplishing a result), an article of manufacture
(the program itself, often embodied in a tangible item such as a floppy
disk), or an apparatus (a machine, device, or system that performs a par-
ticular function).70 Most clearly, reverse engineering a computer program
will involve the making or using of a pure software invention covered by
an article of manufacture or apparatus patent, because those patents cover
the program itself rather than some use of the program. If the patentee has
a process claim, whether reverse engineering will constitute infringement
depends on what that claim covers. A process claim that is internal to the
software, that is, one whose steps involve the internal operation of the pro-
gram may be "used" automatically when the program is run or tested, or
even when it is loaded into RAM. By contrast, an "external" process claim
that requires the use of the program to perform some function in the real
world probably would not be "used" during the process of reverse engi-
neering. Because the patent with an external claim will be written to cover
a process of generating some outcome or performing some function in the
real world, only someone who actually performs the stated function will

69. Kajala, supra note 5, at 60-63.
70. 35 U.S.C. § 101 (1994) (permitting patents for a "process, machine, manufacture, or

composition of matter"). Where part of a claim is written in "means-plus-function" format, determining
the scope of the claim will require reference to the structure actually disclosed in the patent
specification. Such claims are particularly common in software cases. See Mark D. Janis, Who's Afraid
of Functional Claims? Reforming the Patent Law's § 112, fJ 6 Jurisprudence, 15 SANTA CLARA
COMPUTER & HIGH TECH. LJ. 231, 235 (1999). For an explanation of means-plus-function claims, see
35 U.S.C. § 112 $ 6 (1994).

[Vol. 89:1

HeinOnline -- 89 Cal. L. Rev. 20 2001



PA TENT SCOPE AND INNOVATION

infringe the method claim. The temporary copies generated by reverse
engineers likely will not perform this function, and therefore will not
infringe.

In short, some, but not all, software patent claims will raise the issue
we discuss in this Part.71 In the remainder of Part II, we are discussing only
that subset of software patents for which the reverse engineering problem
arises. For this class of patents, probably the majority of true software pat-
ents, there is reason to believe that applying patent law to software signifi-
cantly changes the rules of the game for some would-be reverse engineers.
This problem is far from hypothetical. In 1999, Sony sued Connectix for
copyright infringement based on Connectix's successful effort to reverse
engineer the Sony PlayStation and produce an emulator that would run
Sony video games on a Macintosh computer. The Ninth Circuit held that
Connectix's reverse engineering did not violate copyright law because it
constituted fair use.72 Less than a week later, Sony filed another lawsuit
charging that Connectix's reverse engineering efforts constituted patent
infiingement, precisely the argument this section addresses. In 2000, Sony
filed a similar patent lawsuit against Bleem, again after losing on its copy-
right infringement claims.73 Meanwhile, Microsoft has asserted patents on
a popular video file fonnat to block distribution of an open source version
developed by reverse engineering.74

B. Innovation and Reverse Engineering: An Industry-Based Analysis

The wisdom of permitting reverse engineering of software has been
debated extensively in the last two decades.75 We do not intend to rehash
all those arguments here, though we think it clear that advocates of reverse
engineering have the better part of the argument. Briefly, reverse engi-
neering is an important means of preserving competition between different
products and of preserving compatibility between products. In markets
characterized by network effects, such as software, this latter objective is
particularly important.76

71. Karjala argues that there is no reason to treat a software invention differently depending on
the form in which it appears, because the invention lies in the methodology. Karjala, supra note 5, at
67-68. We are inclined to agree. However, for the reasons we suggest in this Part, we fear that the law
will treat these different forms differently. Over time, moreover, this differential treatment may create
incentives to draft claims in forms that will cover reverse engineering.

72. Sony Computer Entm't, Inc. v. Connectix Corp., 203 F.3d 596, 608 (9th Cir. 2000).
73. Sony Computer Entm't Am. v. Bleem, LLC, 214 F.3d 1022 (9th Cir. 2000); Bloomberg

News, Sony Sues Another Software Firm Over PlayStation Emulator (May 18, 2000), at
http://news.cnet.comnews/0-1006-202-1896822.html.

74. Andy Tai, Microsoft Patents ASF Media File Format, Stops Reverse Engineering (June 5,
2000), at http:/Avww.advogato.org/article/101.html.

75. Supra note 53 (citing commentators).
76. Network effects exist where the value a user derives from a product is a positive function of

how many others use the same product. Thus, telephony is a network market because a user's telephone
becomes more valuable as more and more users buy telephones. On the implications of network effects,

2001]

HeinOnline -- 89 Cal. L. Rev. 21 2001



CALIFORNIA LA W REVIEW

The nexus among intellectual property, compatibility, and network
effects is quite strong. To the extent that intellectual property rights confer
ownership interests in a strong network standard, they may create durable
market power in network markets. Conversely, the existence of compati-
bility between products or standards can in certain circumstances lower
entry barriers created by network effects. The existing reverse engineering
right afforded by the copyright and trade secret laws is particularly impor-
tant in such markets because it facilitates competition within a network
standard in cases in which competition between standards is either
impossible or undesirable.77

These general arguments for permitting reverse engineering are
strong, but we think the case for permitting reverse engineering of patented
software is even stronger. Four additional policies specific to the patent law
militate in favor of a limited reverse engineering right. Reverse engineering
promotes the fundamental patent policies of disclosure and enablement,
ensures that patents will not be leveraged to protect unprotectable
components of software, preserves the balance sought by the intellectual
property system as a whole, and also helps patentees enforce their rights.

see, for example, Michael L. Katz & Carl Shapiro, Network Externalities, Competition, and
Compatibility, 75 AM. ECON. REv. 424 (1985), and Mark A. Lemley & David McGowan, Legal
Implications of Network Economic Effects, 86 CALEn. L. REv. 479 (1998). Software is characterized by
network effects because widespread use facilitates interaction between different programs. Id. at 491-
92. On the importance of compatibility in the presence of network effects, see Joseph Farrell & Michael
L. Katz, The Effects of Antitrust and Intellectual Property Law on Compatibility and Innovation, 43
ANTITRUST BULL. 609 (1998).

77. Competition between potential standards may be undesirable in a strong network market
because it can delay the adoption of a network standard. If the world were divided into two
incompatible telephone networks of approximately equal size, for example, consumers would be worse
off than with a monopoly phone system, because either network would only allow them to reach half of
the population. If the network effects are strong enough, the harm from splitting or even delaying
convergence upon a single standard will outweigh the value to competition between the potential
standards on the intrinsic merits. See generally, e.g., Mark A. Lemley, Antitrust and the Internet
Standardization Problem, 28 CONN. L. REV. 1041 (1996); Mark A. Lemley & David McGowan, Could
Java Change Everything? The Competitive Propriety of a Proprietary Standard, 43 ANTITRUST BULL.
715 (1998).

Doug Lichtman has recently argued that facilitating competition in goods complementary to a
network market is actually undesirable, because it results in a price that is too high given the network
effects. He proposes that the network monopolist be permitted to control the market for complementary
goods in order to coerce a lower price in that market. Douglas Lichtman, Property Rights in Emerging
Platform Technologies, 29 J. LEGAL STUDIEs 615 (2000). If Lichtman is correct-and we are not
persuaded that any system manufacturer that has actually sought to control complementary goods has
done so in order to reduce prices-his argument would be a reason to oppose reverse engineering in
one specific class of cases: complementary goods to strong network markets. But see Jeffrey Church &
Neil Gandal, Systems Competition, Vertical Merger, and Foreclosure, 9 J. EcoN. & MGMT. STRATEGY
1 (2000) (arguing that control by a hardware manufacturer over complementary software goods leads to
monopolization of the complementary goods and higher prices).

[Vol. 89:1

HeinOnline -- 89 Cal. L. Rev. 22 2001



PA TENT SCOPE AND I"NNO VA TION

1. Access to the Patented Invention

To an even greater extent than copyright law, patent law anticipates
and even depends on one party improving another party's invention.78 The
patent statute itself expressly contemplates that "improvements" to other
inventions are themselves a patentable category of invention,79 and even
invites patent claims that declare their "subservience" to a previously pat-
ented invention." More importantly, patent law has developed doctrines
that deal specifically with the circumstance in which one party's invention
infringes another's patent, and yet at the same time represents an improve-
ment on the first patented invention. These doctrines, denominated the
"blocking patents" rule and the "reverse doctrine of equivalents," reward
improvers even though their improvement infringes on a prior patent.8

Indeed, the reverse doctrine of equivalents even excuses literal
infringement if the infringer has radically improved the invention. 2

These doctrines are premised on access by improvers to the
underlying technology they can improve. Some inventions are readily
apparent once embodied in a product; think of the paper clip, for exam-
ple. 3 Improvers do not need to reverse engineer the paper clip and figure
out how it works in order to improve it; they just need to look at it.

78. See generally Lemley, supra note 51, at 1000-29. This is true for a variety of reasons, but
most importantly because the efficient creation of new works requires the new creator to have access to
and use of old works. E.g., RicHARD R. NSON & SIDNEY G. WINTER, AN EVOLUTIONARY THEORY

OF ECONOMIC CHANGE 130 (1982); Merges & Nelson, supra note 51; Nathan Rosenberg, Factors
Affecting the Diffusion of Technology, 10 EXPLORATIONS EcON. Hisr. 3 (1972); Suzanne Scotchmer,
Standing on the Shoulders of Giants: Cumulative Research and the Patent Law, 5 J. ECON.
PERSPECTIVES 29, 29-31 (1991).

79. 35 U.S.C. § 101 (1994).
80. These are so-called Jepson claims, which identify the invention they are improving in the

preamble. See, e.g., Pentec, Inc. v. Graphic Controls Corp., 776 F.2d 309 (Fed. Cir. 1985).
81. E.g., Scripps Clinic & Research Found. v. Genentech, Inc., 927 F.2d 1565, 1581 (Fed. Cir.

1991) (suggesting that a literally infringing device may nonetheless escape liability under the reverse
doctrine of equivalents because it is a radical improvement on the patented technology); United States
Steel Corp. v. Phillips Petroleum Co., 865 F.2d 1247, 1253 n.l1 (Fed. Cir. 1989) ("Dominating patents
are not uncommon."); Atlas Powder Co. v. E.I. duPont de Nemours & Co., 750 F.2d 1569 (Fed. Cir.
1984) (involving an example of the blocking patents rule, which allows an infringing invention to
receive its own improvement patent). For a more complete explication of the blocking patents and
reverse doctrine of equivalents rules, see, for example, Lemley, supra note 51, at 1007-13; Robert
Merges, Intellectual Property Rights and Bargaining Breakdown: The Case of Blocking Patents, 62
TENN. L. REv. 75 (1994) [hereinafter Merges, Bargaining Breakdown]; Robert P. Merges, A Brief Note
on Blocking Patents and Reverse Equivalents: Biotechnology as an Example, 73 J. PAT. &
TP ADENLAR OFF. Soc'Y 878 (1991) [hereinafter Merges, A BriefNote].

82. Scripps Clinic & Research Found., 927 F.2d at 1581 (citing Graver Tank & Mfg. Co. v.
Linde Air Prod. Co., 339 U.S. 605, 608-09 (1950)) (holding that a radically improved method of
isolating drug using recombinant DNA might be excused from infringement).

83. E.g., U.S. Patent No. 5,179,765 (issued Jan. 19, 1993) (granting patent to a "Plastic Paper
Clip").

20011

HeinOnline -- 89 Cal. L. Rev. 23 2001



CALIFORNIA LA W REVIEW [Vol. 89:1

Patentable inventions in software, however, generally do not have these
characteristics.84

Generally, patent law solves this access problem by requiring that pat-
entees publish to the world a description of their invention sufficient to
enable one of ordinary skill in the art to make and use it, as well as their
"best mode" of implementing the invention." Indeed, this disclosure
"bargain" between patentees and the public is central to patent policy.86 For
software patents, however, a series of recent Federal Circuit decisions has
all but eliminated the enablement and best mode requirements.87 The result

84. Samuelson and her colleagues argue that certain features of computer programs are readily
apparent to competitors, and therefore vulnerable to copying. Samuelson et al., supra note 5, at 2333.
Their argument, however, is dependent not only on the vulnerability of programming innovations to
casual inspection, but also on the ability of competitors to reverse engineer and analyze the design
know-how lying "near the surface" of a program. Id. at 2335-37. If patent law precludes reverse
engineering, it also precludes this sort of knowledge. It is true that certain types of computer program
innovations, particularly user interfaces, are necessarily available to even the casual user, at least in
part. But we doubt that these innovations are either the most significant parts of a new computer
program or the most likely to be patented. Further, those innovations for which precise understanding is
most important (such as application program interfaces) are also those which will not be available to
casual inspection.

85. 35 U.S.C. § 112 $ 1 (1994).
86. One classic justification for having a patent system is to encourage inventors to disclose their

ideas to the public, who will benefit from this new knowledge once the patent expires. Kewanee Oil
Corp. v. Bicron Corp., 416 U.S. 470, 489 (1974) (referring to the "federal interest in disclosure"
embodied in the patent laws); see also EDITH TILTON PENROSE, TiH EcONOMICS OF THE
INTERNATIONAL PA'Tr SYSTEM 31-34 (1951).

87. In recent years, the Federal Circuit has held that software patentees need not disclose source
or object code, flowcharts, or detailed descriptions of the patented program. Rather, high-level
functional description is sufficient to satisfy both the enablement and best mode doctrines. See Fonar
Corp. v. General Electric Co., 107 F.3d 1543, 1549 (Fed. Cir. 1997); see also Graham & Zerbe, supra
note 53, at 96-97; Mahajan, supra note 66, at 3317. The Federal Circuit reasons that "the conversion of
a complete thought... into a language a machine understands is necessarily a mere clerical function to
a skilled programmer." Northern Telecom, Inc. v. Datapoint Corp., 908 F.2d 931, 941-42 (Fed. Cir.
1990) (quoting In re Sherwood, 613 F.2d 809, 817 (1980)). Indeed, the Federal Circuit has gone so far
as to hold that patentees can satisfy the best mode requirement for inventions implemented in software
even though they do not use the terms "computer" or "software" anywhere in the specification. Robotic
Vision Sys., Inc. v. View Eng'g, Inc., 42 U.S.P.Q.2d 1619 (Fed. Cir. 1997); In re Dossel, 42
U.S.P.Q.2d 1881 (Fed. Cir. 1997). To be sure, in these latter cases it would probably be obvious to one
skilled in the art that the particular feature in question should be implemented in software. Still, it is
remarkable that the Federal Circuit is willing to find the enablement requirement satisfied by a patent
specification that provides no guidance whatsoever on how the software should be written. It is simply
unrealistic to think that one of ordinary skill in the programming field can necessarily reconstruct a
computer program given no more than the purpose the program is to perform. The Federal Circuit's
peculiar direction in the software enablement cases has effectively nullified the disclosure obligation in
software cases.

A recent development in Federal Circuit jurisprudence may suggest another source for a robust
disclosure obligation, however. The court has recently reinvigorated the written description requirement
in § 112, $ 1, not only in biotechnology cases, e.g., Regents of the University of California v. Eli Lilly
& Co., 119 F.3d 1559 (Fed. Cir. 1997), but also in cases about mechanical inventions. E.g., Gentry
Gallery, Inc. v. Berklne Corp., 134 F.3d 1473 (Fed. Cir. 1998). Under those cases, a patent claim is
invalid if the specification does not expressly describe what the claim covers, even if the specification

HeinOnline -- 89 Cal. L. Rev. 24 2001



PA TENT SCOPE AND INNOVATION

is that software patentees generally do not disclose much, if any, detail
about their programs, and therefore there is no easy way to figure out what
a softvare patent owner has built except to reverse engineer the program.

There are other industries in which reverse engineering is necessary to
determine the characteristics of an invention, but reverse engineering in
those industries probably would not be patent infringement. If a competitor
buys a patented chemical from the patent owner, analyzing that chemical in
the laboratory does not trigger any of the exclusive rights listed in section
271.85 Similarly, peeling apart the layers of a semiconductor chip in order
to determine its layout, while extraordinarily difficult, 9 does not involve
copying the chip itself. But because the most effective way to reverse engi-
neer softvare is to "decompile" it, and decompilation makes a copy of the
patented software, this form of analysis may well be held illegal under pat-
ent law. Thus, software patent owners will get a windfall if they can pre-
vent reverse engineering: the right to preclude access to their invention
and therefore to prevent others from improving it, despite the clear intent
of the patent statute to the contrary.

2. Access to Unpatented Components

If access to the patented invention is a central part of patent policy, an
even more important tenet of patent policy prevents patent owners from
locking up access to unpatented ideas that are in the public domain. Indeed,
the Supreme Court has stated that it would be unconstitutional to use patent
law to withdraw works from the public domain,9" and the antitrust and pat-
ent misuse rules have gone to great lengths to prevent patentees from ex-
panding a patent beyond its bounds.9' Still other patent doctrines, such as
the doctrines of dedication to the public domain92 and prosecution history

gave sufficient information to enable the claim. If this development proves durable, it could mean that
most software patents will be invalid for failure to describe the invention in any detail.

88. The mere use of a lawfully purchased product is not illegal. Infra notes 116-118 and
accompanying text (discussing the exhaustion doctrine).

89. Some sense of the difficulty can be gained by reading Brookiree Corp. v. Advanced Micro
Devices, 977 F.2d 1555 (Fed. Cir. 1992), detailing unsuccessful efforts to reverse engineer a chip built
in the mid-1980s, and then realizing that under Moore's law (the capacity of chips doubles every 18
months) modem chips are about one thousand times as complex as the chips at issue in that case.

90. Graham v. John Deere Co., 383 U.S. 1, 6 (1966) (concluding that it would be unconstitutional
to grant "patents whose effects are to remove existent knowledge from the public domain, or to restrict
free access to materials readily available").

91. The doctrine of patent misuse is primarily directed at preventing patentees from expanding
their patent beyond the scope of the statutory grant. See B. Braun Med., Inc. v. Abbott Labs., 124 F.3d
1419, 1426-27 (Fed. Cir. 1997). Several antitrust doctrines, including the prohibition on tying
arrangements, serve the same purpose in the patent context. See Int'l Salt Co. v. United States, 332 U.S.
392,395-96 (1947).

92. Maxwell v. J. Baker, Inc., 86 F.3d 1098 (Fed. Cir. 1996) (holding that ideas disclosed in a
patent specification, but not claimed in the patent, are dedicated to the public). The continued vitality of
the Maxwell case is in doubt, however, after the Federal Circuit's decision in YBM Magnex, Inc. v.

2001]

HeinOnline -- 89 Cal. L. Rev. 25 2001



CALIFORNIA LA W REVIEW

estoppel,93 are based on the premise that the patentee must not be allowed
to expand its monopoly beyond the scope of what is claimed.

Software patents will create just such an expansion in the absence of a
reverse engineering right. While some software patents, notably those that
are really computer-related inventions, cover an entire computer program,
the majority of true software patents (and virtually all of the truly nonobvi-
ous innovations in software) cover only a single part of a computer pro-
gram. The invention may relate to a component of the larger program, or a
particular algorithm or subroutine, or even a process for getting from one
stage to another, but the invention is unlikely to be coextensive with an
entire computer program.94 In short, it is wrong to speak of a commercial
program as being "patented" in the same sense that we might say it is
"copyrighted." More properly, the software vendor has patents that cover
certain inventions contained in the program. Many parts of the program,
however, are unpatented.

For reasons discussed in the previous Part, the only way to get access
to the unpatented components of the program often will be to reverse engi-
neer the program, and therefore to "make" a copy of the entire program
(including the patented components). This is particularly true because in
most cases it will be impossible even to tell ex ante which portions of a
program are patented. If reverse engineering is illegal, then patenting even
a small part of one computer program can give the patentee effective con-
trol over all the ideas contained in the program. Indeed, patentees have pe-
riodically taken advantage of this fact by patenting "lock-out" devices and
using the patent to try to deny access to the unpatented components of
special-purpose operating systems.96 Given the patent policy in favor of
free access to public domain works, this is of significant concern.

3. The Intellectual Property Balance

A variety of doctrines historically have served to channel certain sorts
of innovation (technical) into the patent sphere and other sorts (artistic)

International Trade Commission, 145 F.3d 1317 (Fed. Cir. 1998), which purported to limit Maxwell to
its facts.

93. Wamer-Jenkinson Co. v. Hilton Davis Chem. Co., 520 U.S. 17,30-34 (1997) (explaining that
patentee is estopped from asserting infringement of broader claim if patentee narrowed that claim in
response to an objection from the PTO).

94. For a discussion of patents on particular components of a computer program, see Mark A.
Lemley & David W. O'Brien, Encouraging Software Reuse, 49 STAN-. L. REv. 255, 294-97 (1997). In
this respect, software patents are like patents in the semiconductor industry, where the patented
invention is normally only a tiny portion of a full product. By contrast, in industries such as
pharmaceuticals, the scope of a patent is normally coextensive with a commercial product.

95. For reasons explained in the prior Part, this is generally not a problem in other industries.
96. E.g., Atari Games Corp. v. Nintendo of America, Inc., 975 F.2d 832, 843-44 (Fed. Cir. 1992);

Cohen, supra note 5, at 1152-53.

[Vol. 89:1

HeinOnline -- 89 Cal. L. Rev. 26 2001



2001] PA TENT SCOPE AND INNO VATION

into the copyright sphere.97 That division between art and science, never
perfect, has all but disintegrated in the software realm.98 Patents have ex-
panded outside the realm of technology, and copyright has expanded to
protect the functional aspects of utilitarian works.99 As patent and copy-
right law overlap more and more, it becomes critical that they take account
of each other.100

Copyright and trade secret law both have strongly articulated policies
permitting reverse engineering where it is undertaken for a legitimate so-
cial purpose. For patent law to ban reverse engineering of software would
undermine the goals of both copyright and trade secret law. It is little con-
solation to a reverse engineer who is held liable for patent infringement
that he or she cannot also be sued for copyright infringement and misap-
propriation of trade secrets. Because patent, copyright, and trade secret
rights can coexist simultaneously in the same piece of software, intellectual
property policy for software must be made with the combination of rights
in mind. If the courts conclude that patent law does not permit reverse en-
gineering, they have effectively nullified the contrary rule in copyright and
trade secret law.' 10 This potential nullification is amply demonstrated by

97. Among those doctrines are the historic prohibition on patenting business methods and printed
matter, neither of which fit within the "technological arts" to which patent law historically has
extended. For a discussion of these doctrines and their recent disavowal, see Durham, supra note 23,
and John R. Thomas, The Patenting of the Liberal Professions, 40 B.C.L. Rev. 1139 (1999). For its
part, copyright has used the idea-expression dichotomy to channel certain types of creativity into the
copyright realm, and others into the patent realm. See, e.g., Baker v. Selden, 101 U.S. 99 (1879) (noting
that some parts of a copyrighted work were eligible for protection only under patent law).

98. See generally J.H. Reichman, Legal Hybrids Between the Patent and Copyright Paradigms,
94 COLUM. L. REv. 2432 (1994) (discussing the traditional division, and deviations from this "bipolar"
structure).

99. The floodgates for non-technological patents were opened by State Street Bank & Trust Co.
v. Signature Financial Group, Inc., 149 F.3d 1368 (Fed. Cir. 1998), which allowed the patenting of
pure business methods. A number of patents had already issued for such non-technological concepts as
methods of holding a golf putter, however. See, e.g., U.S. Patent No. 5,776,016 (claiming a "Golf
Putting Method"). Copyright protection for software necessarily involves protection for the functional
aspects of what are essentially utilitarian works, and copyright law has struggled in cases like Lotus
Development Corp. v. Borland International, Inc., 49 F.3d 807 (Ist Cir. 1995), to reconcile this fact
with the limiting doctrines of copyright law. As a result, copyright protection is not really centered on
the real source of value in a computer program, which is its useful behavior. See, e.g., Samuelson et al.,
supra note 5, at 2350. A number of authors have suggested that neither patent nor copyright fits
sotftvare particularly well. E.g., Peter S. Menell, Tailoring Legal Protection for Computer Software, 39
STAN. L. Ray. 1329 (1987); Samuelson et al., supra note 5, at 2308.

100. Karijala, supra note 5, at 43-44.
101. For a detailed discussion of the overlap between copyright and patent in this area, see

Karala, supra note 5, and Dennis S. Karijala, A Coherent Theory for the Copyright Protection of
Computer Software and Recent Judicial Interpretations, 66 U. CIN. L. REv. 53 (1997); cf Merges,
supra note 46, at 16-17 (noting this problem, but suggesting that disaggregated ownership of software
patents may result in collective rights organizations that promote interoperability, and therefore
preclude the need to reverse engineer patented programs). Merges bases his argument on the fact that
software patents protect only particular components of a program, rather than the program as a whole,
and that patentees will therefore need to trade with each other to obtain rights. While this is
undoubtedly true in certain industries, such as semiconductors, it remains to be seen whether a similar

HeinOnline -- 89 Cal. L. Rev. 27 2001



CALIFORNIA LA W REVIEW

Sony v. Connectix, discussed above. 2 There, Sony has engaged in an
end-run around the Ninth Circuit decision on copyright infringement by
filing a software patent infringement suit against the same act of reverse
engineering that the court held legal under copyright law.

4. Litigation-Related Uses

Finally, a ban on reverse engineering interferes with legitimate
litigation-related investigations. Ironically, such a ban may make it difficult
or impossible to detect patent infringement. Many software inventions are
internal to the program, and their use cannot be detected without parsing
the code. A patent owner who suspects a rival of infringing such a software
patent may have no choice but to reverse engineer the rival's software in
order to gain the evidence it needs to file suit. 3 If that rival has its own
patents on a separate aspect of the program, however, reverse engineering
as part of a pre-filing investigation will itself infringe the rival's patents. At
the least, this puts a new argument in the hands of a patent defendant; at
most, it may deter meritorious patent infringement suits from ever being
filed."°

A ban on reverse engineering will also limit investigations by poten-
tial infringers into the validity of the patent. Reverse engineering a program
may be the only way to determine that a patentee failed to disclose its best
mode. Alternatively, reverse engineering may disclose that a patented in-
vention was in fact in use before a critical statutory bar date, and that the
patent is therefore invalid.105 Because source code is not published with the
patent, reverse engineering may be the only way to investigate the
workings of a patented program.

market will develop for software patents. Cf Lemley & O'Brien, supra note 94 (noting the component-
based nature of software patents, but suggesting that the law should promote the recombination of
components by denying strong protection to the interfaces between them). Indeed, how the market
develops may depend fundamentally on how broadly software patents are construed, a subject we take
up in the next Part.

102. See supra note 72 and accompanying text.
103. While some evidence may be available in discovery once a suit is filed, the Federal Circuit

has made it quite clear that a patentee cannot file suit based on a mere suspicion of infringement, but
must have made a "reasonable inquiry" before filing suit. Indeed, to file suit without such an inquiry
violates Rule 11. E.g., View Eng'g, Inc. v. Robotic Visions Sys., 54 U.S.P.Q.2d 1179 (Fed. Cir. 2000);
Judin v. United States, 110 F.3d 780 (Fed. Cir. 1997); Refac Int'l Ltd. v. Hitachi Ltd., 19 U.S.P.Q.2d
1855, 1858-59 (C.D. Cal. 1991) (imposing sanctions against a plaintiff who did not examine every
accused device before filing suit). But see Vista Mfg., Inc. v. Trac-4, Inc., 15 U.S.P.Q.2d 1345, 1347-
48 (N.D. Ind. 1990) (no "general rule that Rule 11 requires an infringement plaintiff to examine the
defendant's product in all instances").

104. Cf. Pamela Samuelson, Intellectual Property and the Digital Economy: Why the Anti-
Circumvention Regulations Need to Be Revised, 14 BERKELEY TECH. LJ. 519, 543 (1999) (noting a
similar problem with the new Digital Millennium Copyright Act, which makes it illegal to circumvent
copy protections even to determine whether the protected work is infringing).

105. 35 U.S.C. § 102(b).

[Vol. 89:1

HeinOnline -- 89 Cal. L. Rev. 28 2001



PATENT SCOPE AND INNOVATION

C. Creating a Right to Reverse Engineer Patented Software

Given the strong policy reasons to permit reverse engineering of pat-
ented software, it is worth taking a closer look at several defenses to patent
infringement that might protect such activity. No court has yet considered
whether reverse engineering of patented software is infringing; thus, no
court has considered whether reverse engineering is protected by the ex-
perimental use, exhaustion, implied license, or misuse doctrines. It is not
clear how such a defense would be resolved. The experimental use doctrine
in particular appears to have been interpreted very narrowly, and the im-
plied license and exhaustion rules may be too easy to undermine by con-
tract. At the same time, we think the policy arguments in favor of
permitting reverse engineering of patented software discussed in the previ-
ous Part are overwhelming. Reverse engineering enables competitors to
develop noninfringing products, to develop new products that are compati-
ble with existing standards, and to have access to the unprotected parts of
patented programs. A right to reverse engineer patented software is con-
sistent with the right to use other patented inventions once lawfully pur-
chased, and with the way the copyright and trade secret laws treat software.
Accordingly, we recommend that Congress legislate a reverse engineering
defense if the courts do not recognize one.

1. Experimental Use

The patent statute itself contains only a narrow experimental use de-
fense, and it is limited to circumstances clearly not relevant here.1 1

6 How-
ever, there is also a non-statutory exception for experimental uses. Ever
since Justice Story's decision in Whittemore v. Cutter,11

7 it has been settled
law that purely experimental uses were noninfringing. The court reasoned
that "it could never have been the intention of the legislature to punish a
man, who constructed such a machine merely for philosophical
experiments, or for the purpose of ascertaining the sufficiency of the
machine to produce its described effects." ' Justice Story distinguished
inventions made "with a design to use [them] for profit," however. The
latter could not be thought "experimental" in nature." 9

106. 35 U.S.C. § 271(e)(1) (1994) (allowing only experimental activity preparatory to the filing of
a new product application before the Food and Drug Administration). The experimental use defenses to
infringement should be distinguished from the doctrine of experimental use in 35 U.S.C. § 102(b)
(1994), which excuses a delay in patenting by someone who is still experimenting with his or her
invention. On the latter doctrine, see Elizabeth v. Pavement Co., 97 U.S. 126 (1877).

107. 29 F. Cas. 1120 (C.C.D. Mass. 1813).
108. Id. at 1121.
109. Id.

2001]

HeinOnline -- 89 Cal. L. Rev. 29 2001



CALIFORNIA LA W REVIEW

This experimental-commercial distinction has been applied with in-
creasing rigor over the years.110 The result is to make the experimental use
defense "truly narrow," and therefore of little use to most litigants."' In
Roche Products, Inc. v. Bolar Pharmaceutical Co., the Federal Circuit
concluded that a use was not "experimental" within the meaning of the ex-
ception if it "has definite, cognizable, and not insubstantial commercial
purposes.' ' 12 Only if an experiment has no ultimate commercial purpose at
all will it be protected under this doctrine.1 3

This is not the only possible conclusion, or even a wise one. Rebecca
Eisenberg, in particular, has articulated a compelling argument for a
broader vision of experimental use, one that encompasses scientific explo-
ration leading to commercial but noninfringing end products." 4 If applied
in software, such a vision would surely protect reverse engineers. We think
a court probably should read the experimental use defense this way. But as
currently interpreted by the courts, the experimental use defense will not
aid reverse engineers who hope to make and sell noninfringing products.15

2. First Sale, Implied License, and Exhaustion

It is a well-established principle of patent law that a patentee's right to
control the use of his patented goods does not extend beyond the first sale
of a patented product. That is, a consumer who buys a patented product (or
a product that necessarily uses a patented process) from the patentee has

110. For an excellent history of the research exemptions, see David L. Parker, Patent Infringement
Exemptionsfor Life Science Research, 16 Hous. J. Irrr'L L. 615, 626-36 (1994).

111. See Roche Prods., Inc. v. Bolar Pharm. Co., 733 F.2d 858, 863 (Fed. Cir. 1984). For a
discussion of the scope of the experimental use doctrine, see Lauren C. Bruzzone, The Research
Exemption: A Proposal, 21 AIPLA Q.J. 52 (1993).

112. Roche Prods., 733 F.2d at 863; see also Embrex v. Service Eng. Corp., 55 U.S.P.Q.2d 1161
(Fed. Cir. 2000) (holding that commerical enterprise's use of patented process in laboratory test did not
qualify as experimental use); Pitcaim v. United States, 547 F.2d 1106, 1125-26 (Ct. Cl. 1976) (holding
that experiments "in keeping with the legitimate business" of the accused infringer are not exempt from
the patent laws).

113. Roche Prods., 733 F.2d at 862 (quoting W. ROBINSON, THE LAW OF PATENTS FOR USEFUL
INVENTIONS § 898 (1890)) ("where it is made or used as an experiment, whether for the gratification of
scientific tastes, or for curiosity, or for amusement, the interests of the patentee are not antagonized").
One court offered a slightly broader reading of the doctrine of experimental use in Giese v. Pierce
Chemical Co., 29 F. Supp. 2d 33 (D. Mass. 1998). That court noted that use of a patented process for
academic medical research might well be a protected experimental use, though it refused to decide the
question on summary judgment. Even if this new interpretation is widely accepted, however, it will do
little to help most reverse engineers in the software industry.

114. Rebecca S. Eisenberg, Patents and the Progress of Science: Exclusive Rights and
Experimental Use, 56 U. Cmn. L. REv. 1017, 1078 (1989); see John H. Barton, Reforming the Patent
System, 287 Sct. 1933 (2000). But see Jordan P. Karp, Experimental Use as Patent Infringement: The
Impropriety of a Broad Exception, 100 YALE LJ. 2169 (1991).

115. Indeed, the judicial trend seems to be in the opposite direction. Judge Rader, concurring in
Embrex, would have abolished the doctrine outright.

[Vol. 89:1

HeinOnline -- 89 Cal. L. Rev. 30 2001



PA TENT SCOPE AND INNOVATION

the right to use and resell that product without the patentee's approval l1 6

Courts have developed two parallel doctrines that support such a right: the
principles of exhaustion and implied license. These doctrines have similar
consequences, but they stem from very different sources." 7

The exhaustion doctrine finds its basis in the foundations of patent
policy, which seeks not only to grant exclusive rights to patentees but also
to limit those rights. Exhaustion represents one such limit on a patentee's
right to control her invention: that control ceases with respect to a par-
ticular product once she has sold that product. In the words of the Supreme
Court, "when the machine passes to the hands of the purchaser, it is no
longer within the limits of the monopoly. It passes outside of it, and is no
longer under the protection of the [patent laws]." ' It is not the patent right
itself that is exhausted, of course. The patentee retains the rights to prevent
anyone else, including the buyer, from making, using, or selling additional
copies of the patented item. But once the patentee has sold a particular
product, its control over that particular product ends, and the general legal
antipathy toward restraints on alienation takes over.

The doctrine of implied license impels courts to much the same con-
clusion: buying a product carries with it an implied right to use and resell
the product.1 9 Indeed, courts have frequently conflated the two doc-
trines." But while patent exhaustion stems from inherent limits on the
grant of the patent right, implied license is a doctrine of quasi-contract, and
depends on the beliefs and expectations of the parties to the sales

116. United States v. Univis Lens Co., 316 U.S. 241, 249 (1942) ("An incident to the purchase of
any article, whether patented or unpatented, is the right to use and sell it .... ); Glass Equip. Dev. v.
Besten, Inc., 50 U.S.P.Q.2d 1300 (Fed. Cir. 1999) ("The first sale doctrine stands for the proposition
that, absent unusual circumstances, courts infer that a patent owner has given up the right to exclude
concerning a patented article that the owner sells."); Intel Corp. v. ULSI Sys. Tech., 27 U.S.P.Q.2d
1136 (Fed. Cir. 1993); Becton, Dickinson & Co. v. Eisele & Co., 86 F.2d 267, 270 (6th Cir. 1936)
("Once having sold patented articles, neither the patentee nor its licensee may exercise future control
over them. They pass beyond the scope of the patentee's monopoly."); 5 CHIsUtM, supra note 13, at
§ 16.03(2)(a). Similarly, when a patentee sells a product to be used in a patented process, the sale of the
product normally carries with it an implied license to use the patented process. Glass Equip. Dev., 50
U.S.P.Q.2d at 1302-03.

117. For an excellent discussion of both doctrines in historical context, see Mark D. Janis, A Tale
of the Apocryphal Axe: Repair, Reconstruction, and the Implied License in Intellectual Property Law,
58 MD. L. REv. 423 (1999), and CHISUtI, supra note 13, at § 16.03.

118. Bloomer v. McQuewan, 55 U.S. (14 How.) 539, 549 (1852); see also Goodyear v. Beverly
Rubber Co., 10 F. Cas. 638, 641 (C.C.D. Mass. 1859) (stating that legal control of patented property
passes to buyer after a valid sale).

119. General Elec. Co. v. United States, 572 F.2d 745, 784-85 (Ct. Cl. 1978) ("[lt can be properly
assumed that as part of the bargain the seller of a device incorporating a patented
combination.., authorizes the buyer to continue to use the device....").

120. Janis, supra note 117, at 495 (noting instances of such confusion). But cf Wang Labs., Inc. v.
Mitsubishi Elecs. Am., Inc., 103 F.3d 1571 (Fed. Cir. 1997) (cataloguing various sorts of license and
estoppel claims).

2001]

HeinOnline -- 89 Cal. L. Rev. 31 2001



CALIFORNIA LA WREVIEW

transaction."' It is most commonly applied in cases where the product sold
by the patentee is not itself patented, but is necessary for use in a patented
process.1

2

Both doctiines have traditionally drawn a distinction between using
and reselling a particular copy of a patented product, which is permissible,
and making a new copy of a patented product, which is not. Software pat-
ents undermine this distinction. It is impossible to use software without
"making" a copy, at least temporarily, in the memory of a computer."z If
the exhaustion and implied license doctrines do not protect the making of
such temporary copies, those doctrines will effectively be nullified in the
software context. No use of a purchased program would be permissible
without express permission from the patentee.

We think that a reasonable court should reject this interpretation.
Rather than focusing blindly on the distinction between making and using,
courts dealing with software patents should look to the underlying policies
behind the exhaustion and implied license principles. Permitting reasonable
uses of the purchased software serves those underlying policies. Reverse
engineering is such a use. It is legal under all other intellectual property
laws, and has long been a favored tool of computer programmers. Further,
reverse engineering of patented non-software products would unquestiona-
bly be lawful, for the simple reason that it would constitute only a "use"
and not an impermissible "making" of the patented product.'24

The next question is whether patentees can withdraw the protection of
the exhaustion and implied license doctrines by refusing to permit buyers
to reverse engineer their software. Here, exhaustion and implied license
give potentially different answers. An implied license is, after all, a con-
tractual vehicle; a license that is merely implied from the transaction's cir-
cumstances ordinarily can be disclaimed by an express statement to the

121. Janis, supra note 117, at 502-505 (noting the critical role intent of the parties plays in
determining the scope of an implied license).

122. The exhaustion doctrine would not apply in such a circumstance, because there has been no
"first sale" of a patented product.

123. This has been the subject of considerable litigation in the copyright arena. Most courts now
hold that a temporary copy loaded in the RAM memory of a computer is "fixed" and therefore
constitutes a new copy for copyright purposes. E.g., MAI Sys. Corp. v. Peak Computer, Inc., 991 F.2d
511, 518 (9th Cir. 1993). While this is almost certainly the wrong conclusion, see Mark A. Lemley,
Dealing with Overlapping Copyrights on the Internet, 22 U. DAYTON L. REv. 547, 551-52 & n.25
(1997) (cataloguing the critiques of MA/), an analogous conclusion seems self-evident in patent law.
Because patent law has no fixation requirement at all, any reproduction of a patented program, no
matter how temporary, arguably constitutes a "making" within the meaning of the statute. Witek, supra
note 66, at 369-72.

124. Thus, we agree with Janis insofar as he objects to "device-oriented" results: there is no
reason for the particular nature of software to change the effective legal rights buyers possess. Janis,
supra note 117, at 492.

Of course, the exhaustion and implied license doctrines would only protect intermediate copying
done as part of reverse engineering. The reverse engineer would still be obligated to ensure that its final
product did not infringe the patent.

[Vol. 89:1

HeinOnline -- 89 Cal. L. Rev. 32 2001


