Trademarks as Surveillance Transparency

Amanda Levendowski
Georgetown University Law Center, a1420@georgetown.edu

This paper can be downloaded free of charge from:
https://scholarship.law.georgetown.edu/facpub/2437
https://ssrn.com/abstract=3544195


This open-access article is brought to you by the Georgetown Law Library. Posted with permission of the author. Follow this and additional works at: https://scholarship.law.georgetown.edu/facpub
Part of the Intellectual Property Law Commons, and the National Security Law Commons
Trademarks as Surveillance Transparency
Amanda Levendowski

ABSTRACT

We know very little about the technologies that watch us. From cell site simulators to predictive policing algorithms, the lack of transparency around surveillance technologies makes it difficult for the public to engage in meaningful oversight. Legal scholars have critiqued various corporate and law enforcement justifications for surveillance opacity, including contract and intellectual property law. But the public needs a free, public, and easily accessible source of information about corporate technologies that might be used to watch us. To date, the literature has overlooked a free, extensive, and easily accessible source of information about surveillance technologies hidden in plain sight: federal trademark filings.

This Essay examines the powerful and unexplored role of trademark law in exercising oversight within and beyond surveillance. Trademark law promotes access to information, and the federal trademark application process—long overlooked by scholars—demands extensive public disclosures that reveal a wealth of information about surveillance technologies. This Essay leverages examples from real trademark applications to explore how journalists, researchers, and civil society can use the detailed disclosures in trademark applications for transparency. I conclude that trademark law can be a powerful tool for correcting longstanding information asymmetries between the watchers and the watched by empowering the public to watch back.

I. INTRODUCTION

II. WHERE TO FIND DISCLOSURES IN TRADEMARK FILINGS
A. Intent to Use or In-Use Designation
B. Goods and Services Descriptions
C. Specimens

III. REVEALING DISCLOSURES IN TRADEMARK FILINGS FOR SURVEILLANCE TECHNOLOGIES
A. STINGRAY: Cell-Site Location Information Interceptors
B. VIGILANT SOLUTIONS: Automated License Plate Readers
C. PREDPOL: Predictive Policing Algorithms

IV. CONCLUSION

---

1 Associate Professor of Law and Director, Intellectual Property and Information Policy Clinic at Georgetown University Law Center. Thanks to Lindsey Barrett, Barton Beebe, Priya Chadha, Julie Cohen, Bradley Girard, Dave Gershon, Alex Reeve Givens, Megan Graham, Brett Max Kaufman, Karen Levy, Chris Morten, Laura Moy, and Cameron Tepski for their thoughtful and generous comments. This Essay benefited from presentation to the Georgetown Tech Law Scholars and will benefit from presentation at the Internet Law Works-in-Progress Conference and Privacy Law Scholars Conference. Shadé Oladetimi provided sharp research assistance.

[DRAFT 2/25/2020]
I. INTRODUCTION

In February 2018, Amazon acquired a “smart” doorbell company called Ring.² For Amazon, a company that delivers more than 5 billion items annually,³ acquiring a way to monitor the real estate where packages are delivered makes sense. Yet statements from the acquired Ring seemed grandiose for the purchase of a private security system, including that the company “look[ed] forward to being a part of the Amazon team as we work toward our vision for safer neighborhoods.”⁴ Amazon’s full vision for Amazon Ring devices became clear to the public more than a year later when journalists revealed that the company had quietly partnered with police departments across the country to promote and deploy Amazon Ring devices as part of a privatized surveillance network.⁵

Private companies, like Amazon, increasingly create surveillance technology used by law enforcement, but the public is often not aware that these technologies are being developed and deployed until the technology is already embedded in communities. Private companies developing surveillance technology for law enforcement is not new, and neither is the lack of transparency around those relationships. Acquisitions of surveillance technology may be made with outside funding or through in-kind donations to police departments, making surveillance technology difficult to track through financial disclosures.⁶ Filing federal Freedom

---

of Information Act (FOIA) requests or using local public records laws to ask for information about surveillance technologies used by law enforcement can be resource intensive, and there is no guarantee that law enforcement will disclose responsive documents about surveillance technology. Elizabeth Joh has detailed how private contracts, such as non-disclosure agreements between police departments and surveillance technology companies, can pose another roadblock to transparency. And Rebecca Wexler has likewise documented the ways in which trade secret law can operate to shield surveillance technology from public scrutiny. Some jurisdictions have responded to this disparity by enacting “procurement policies” for surveillance technologies, as Catherine Crump has examined, but few jurisdictions have enacted policies that require public disclosure of a proposed surveillance technology prior to procurement. The reasons may vary, but the result is the same: there is a vast informational inequity between law enforcement and the public about surveillance technologies.

Journalists and civil society have turned to other public sources of information, such as Securities and Exchange Commission disclosures and patent filings, to help correct informational disparities. SEC disclosures are often too general to reveal useful information about surveillance technology products. And patent filings are not a promise to produce a product, as Amazon pointed out when confronted with a patent filing for a Ring-compatible expansion that would enable

---


11 See, e.g., Amazon Annual Report (Form 10-K) (Dec. 31, 2018), https://www.sec.gov/Archives/edgar/data/1001018724/000101872419000004/amzn-20181231x10k.htm (disclosing that Ring Inc. was purchased “for cash consideration of approximately $839 million” for the primary reason, along with other acquisitions, of “acquir[ing] technologies and know-how to enable Amazon to serve customers more effectively”).
the cameras to create composite images of people to incorporate into a “database of suspicious persons.”

Taken together, surveillance transparency has never been more challenging. Yet the public still desperately needs a freely available, easily accessible source of information about the surveillance technologies that will be used to watch us if there is hope for public discussion or dialogue before law enforcement embraces these technologies. One source is consistently overlooked: federal trademark filings.

Take Amazon Ring. In its August 2018 trademark application for the AMAZON RING mark, Amazon publicly revealed its vision for Ring: “automated self-contained electronic surveillance than can be deployed to gather evidence or intelligence.” And it did so nearly a year before journalists detailed how that vision would operate in practice.

Federal trademark filings can offer important insight into the surveillance technologies that private corporations are developing, but the public has not fully explored the Trademark Electronic Search System (TESS) and Trademark Status and Document Retrieval (TSDR) databases as joint pathways toward surveillance

---


transparency.\textsuperscript{15} The reason is obvious. As Justice Samuel Alito observed, “[I]t is unlikely that more than a tiny fraction of the public has any idea what federal trademark registration of a trademark means.”\textsuperscript{16}

This is, in some part, attributable to the dearth of scholarly writing related to the federal trademark registration process. As recently as 2017, Rebecca Tushnet observed that the mechanics of trademark registration garner little attention—and not much has changed in the interim years.\textsuperscript{17} This Essay delves into the largely unexamined mechanics of the federal trademark registration process and analyzes how the trademark application process compels companies to disclose details about new surveillance technologies. In so doing, this Essay’s goal is to offer a new tool in the quest for surveillance transparency and to equip the public, including journalists, researchers, and civil society, with the skills necessary to investigate the trademark register for themselves.

The Essay proceeds in two parts. Part I describes the federal trademark application process and identifies three portions of trademark filings that are likely to disclose information about surveillance technology: the use designation, the goods and services description, and the specimen. Part II uses the trademark applications for three surveillance technologies—Harris Corporation’s STINGRAY cell site location information (CSLI) interceptor, Vigilant Solution’s VIGILANT SOLUTIONS automated license plate readers, and Predpol’s PREDPOL predictive policing software—to illustrate how to leverage revealing disclosures in trademark filings for transparency. This Essay concludes that federal trademark filings are a freely available, easily accessible way for the public to learn about surveillance technologies used to watch us.

\begin{footnotesize}
\begin{itemize}
\item[15] There are also 50 state trademark registers, each with their own rules and procedures and processed, along with international registers, some of which are accessible online. See, e.g., eSearch Plus, European Union Intellectual Property Office (last accessed Jan. 5, 2020) (search database for European Union trademarks, designs, owners, representatives, Bulletins, and Office decisions), \url{https://euipo.europa.eu/eSearch/} and TMview, European Union Intellectual Property Office (last accessed Jan. 5, 2020), (search database for trademark names, applications, and registration numbers in additional countries and databases), \url{https://www.tmdn.org/tmview/welcome}.
\item[17] Rebecca Tushnet, \textit{Registering Disagreement}, 130 HARV. L. REV. 867, 871 (2017), \url{http://harvardlawreview.org/wp-content/uploads/2017/01/867-941-Online-updated.pdf} (“Foundational critiques of modern trademark law tend not to address the role of registration… Proponents of the Chicago School of law and economics approach, whose account of the function of trademark as reducing consumers’ search costs is now dominant, likewise have little to say about registration… American scholars, in sum, have often treated registration like a borrowed civil law coat thrown awkwardly over the shoulders of a common law regime.”)
\end{itemize}
\end{footnotesize}
II. DISCOVERING DISCLOSURES IN TRADEMARK FILINGS

A trademark is “any word, name, symbol, device, or any combination” of those things that can be used to identify the provider or seller, and indicate the source, of certain goods and services. As the Supreme Court has observed, “[f]ederal law does not create trademarks.” Use of a mark can create a trademark and accrue some enforceable rights, but the reality remains that federal trademark registration confers crucial rights and benefits, such as providing constructive notice of the registrant’s claim of ownership and offering prima facie evidence that the registered mark is valid.

There is ample scholarship about the purposes of trademark law. But as Rebecca Tushnet has explained, precious little of that scholarship is dedicated to the mechanics of federal trademark registration. Indeed, to date, there has been no scholarship centered on the mechanics of investigating federal trademark filings.

The federal trademark registration process begins with a trademark application. An applicant discloses detailed information about the mark they are seeking to register, including whether the mark has been used, the sorts of goods and services on which the mark is (or will be) used, and, in some instances, a depiction of how the mark is (or will be) used in the real world. Federal

---

24 Perhaps the most complete judicial discussion of the trademark application and registration process can be found in Kelly Services, Inc. v. Creative Harbor, LLC, 846 F.3d 857, 876 (6th Cir. 2017) (Batchelder, J., dissenting), https://www.leagle.com/decision/infc020170123094.
25 See generally “Apply Online,” U.S. Patent and Trademark Office (last accessed Jan. 5, 2010), https://www.uspto.gov/trademarks-application-process/filing-online (outlining the forms necessary to apply for a federal trademark online). The revealing disclosures demanded by the
trademark filings are all freely and publicly searchable using the Trademark Electronic Search System, or TESS. The U.S. Patent and Trademark Office launched TESS in 2000. TESS offers a way to search federal trademark filings online without cost and, while it does not require any technical expertise, it can be a tricky interface.

There are two primary types of TESS searches: simple and structured. Using the basic fields in both types of searches, searchers can surface trademark applications for surveillance technologies through strategic queries. Simple searches enable searching by limited criteria, namely by Combined Word Mark (e.g., AMAZON RING), Serial or Registration Number (88075713), and Owner Name and Address (Amazon Technologies, Inc., 410 Terry Avenue North, Seattle, Washington 98109). Structured searches permit searching by a wider range of search terms across many more fields, including Current Basis (1B, Intent to Use), Goods and Services (surveillance), and International Class (Class 9). After running a search using TESS, one can view each of the filings for a particular trademark application using the Trademark Status and Document Retrieval system.

Crucially, and unlike patent applicants, all federal trademark applicants must make “bona fide use of the mark in the ordinary course of trade, and not simply made to reserve rights in the mark.” Applicants who make misrepresentations in their federal trademark application process incentivizes some companies to take advantage of the closed, non-public registers of countries like Trinidad and Tobago—or the use of shell companies, as was the case with the AMAZON RING filing—to protect their mark without disclosing detailed information to the public about products or services in development. See AMAZON RING, Ser. No. 88075713 (filed by “A9.com” and later assigned to Amazon, Inc. on May 15, 2019). These methods allow a company to claim priority of the earlier foreign filing without disclosing details about the mark—or the mark itself—until months later. For a detailed analysis of these so-called “submarine trademarks,” see Carsten Fink & Andrea Fosfuri, et al., Submarine Trademarks (Feb. 15, 2019), http://www.law.northwestern.edu/research-faculty/clbe/events/innovation/documents/helmers_submarine_trademarks.pdf.


30 See Trademark Status & Document Retrieval (TSDR), http://tsdr.uspto.gov. Note that there are far fewer ways to run trademark searches using TSDR, which limits search fields to US Serial, Registration, or Reference number or International Registration number. Id.

31 15 U.S.C. § 1127; see also TMEP § 901.02.
during the trademark application process risk losing federal trademark protection for their mark. Requiring that applicants must intend to use the mark in connection with the goods and services identified in the application means that trademark applications avoid the issue posed by dystopian patents that companies, like Amazon, dismiss as speculative. The bona fide requirement forces companies to stand by representations made in their applications, correct their errors or admit to misleading the U.S. Patent and Trademark Office.

Three portions of trademark applications predictably yield useful information about surveillance technologies. The first is the “use designation,” which requires the applicant to identify whether the mark is currently in use for the underlying product or whether the mark is an intent-to-use application. The second is the goods and services classifications and descriptions, which offer general categorizations and specific identifications of the types of products for which the mark will be used. And the final one, and perhaps the most unique and valuable, is the “specimen” portion, which consists of visual representations depicting how the mark is used in commerce—think screenshots of computer interfaces and photographs of hardware emblazoned with logos. This Part examines each of those three portions of trademark applications in turn.

D. Intent to Use or In-Use Designation

Federal trademark filings require a designation regarding whether the owner is currently using the mark in commerce or whether the owner intends to use the mark at a future date. When viewing an application in TESS, these designations are coded as filing bases 1A and 1B, respectively. For in-use applications, the owner must disclose the date the mark was first used in commerce. The use designation offers a way to determine when goods and services under a particular mark were first offered to the relevant purchasing public, which, in some instances, may be sales to law enforcement.

III. GOODS AND SERVICES CLASSIFICATIONS AND DESCRIPTIONS

---

33 Supra Introduction.
36 15 U.S.C. § 1051(2). Six months after filing an intent-to-use application, the owner must file a Statement of Use confirming that the mark is being used in commerce or risk abandoning the application. 15 U.S.C. § 1051(d)(1). On a showing of good cause by the applicant, the Director of the U.S. Patent and Trademark Office may grant a series of six-month extensions, so long as the overall extension does not exceed 24 months. 15 U.S.C. § 1051 (d)(2).
The goods and services classification and description portion of federal trademark filings consists of two components: a numerical classification categorizing the goods or services and a plain-language description of the goods or services to be covered by a particular mark. The classification and description requirement for federal trademark filings dates back to 1870 and the earliest codified trademark law in the United States, which required applicants to identify “the class of merchandise and the particular description of goods to which the trade[mark] has been or is intended to be appropriated. Subsequent trademark laws similarly required the identification of goods, although without acknowledging protection for federal trademarks used in connection with services. The Lanham Act, passed in 1946, finally extended trademark protection to services.

Federal law does not mandate a classification system, but the Director of the U.S. Patent and Trademark Office (USPTO) has determined one: the Nice Classification, a numerical classification system featuring 45 distinct classes, with so-called International Classes 1 through 34 identifying goods and International Classes 35 through 45 identifying services. Class 1, for example, covers “chemicals,” including those used in industry, science, photography, agriculture, and forestry, among many others.

Surveillance technologies are likely to fall into one or more of the following classes: Class 9 covering electrical and scientific apparatuses, which includes hardware and computer software (such as body-worn cameras) or predictive

---

37 The Act made no mention of trademark in its title, ironically, but was rather intended to “revise, consolidate, and amend the statutes relating to patent and copyright.” H.R. 1714, 41st Cong. (1870). The first U.S. trademark law was struck down as unconstitutional after the Trade-Mark Cases in 1879, when the Supreme Court held that the Copyright Clause of the Constitution did not give Congress the power to protect or regulate trademarks. See The Trade-Mark Cases, 100 U.S. 82 (1879). Subsequent trademark laws were enacted under the authority of the Commerce Clause. TK.

38 See, e.g., 1881 Trademark Bill; H.R. 16560, 58th Cong. (1905).

39 Lanham Act; see also In re Dr. Pepper Co., 836 F.2d 508, 509 (Fed. Cir. 1987).


41 TMEP 1401.02(a); see also the Nice Agreement. The United States became a signatory to the Nice Agreement in 1973. See TMEP 1401.02(a).

42 TMEP 1401.02(a).

43 Taser International filed a trademark application for the AXON AI mark covering “[s]urveillance services featuring use of video cameras that can be worn on the head and the body and video surveillance systems used in automobiles, and computers and mobile electronic devices to provide location-specific information about the video” on February 20, 2017—more than X days before the rebrand from Taser to Axon was made public, teasing the company’s increasing focus on software rather than hardware. Compare AXON AI, Ser. No. 87341984 (Feb. 20, 2017) with Stephen Nellis, “Taser Changes Name to Axon in Shift to Software Services,” Reuters (Apr. 5, 2017).
policing algorithms), Class 42 covering computer and scientific services (such as developing big data analytics software) or Class 45 covering personal and legal services (such as surveillance services or monitoring computer services for clients).\textsuperscript{44} Goods and services descriptions offer additional detail about the goods or services on which a mark will be used. Many model goods and services descriptions are included the Acceptable Identification of Goods and Services Manual (ID Manual),\textsuperscript{45} which operates as a guide for trademark applicants looking to craft goods and services descriptions that will be intelligible to trademark examiners and thus unlikely to create complications for the application.\textsuperscript{46} Applicants may try to disclose limited information in goods and services descriptions, but such strategies are may limit the power of the mark and, in some instances, trigger Office Action requests from the Examiner seeking information about additional goods and services.\textsuperscript{47}

Searches using classifications and goods and services descriptions are “structured” searches within TESS.\textsuperscript{48} After selecting the option to begin a structured search, users can search by classification by typing the desired class number as the “Search Term” and selecting “International Class” as the field.\textsuperscript{49} Because a search premised on class alone is likely to return many irrelevant results, one can further filter the search by typing key words from the goods and services description, such as “surveillance,” as the Search Term and selecting “Goods & Services” as the field.\textsuperscript{50} This search method is likely to yield surveillance

\textsuperscript{44} TMEP 1401.02 (a). Other possible, though less likely, classes for surveillance technologies include Class 35 covering advertising and business services, Class 38 covering telecommunications services, and Class 41 covering education and entertainment services. \textit{Id.}

\textsuperscript{45} See Trademark ID Manual, \textit{ID Master List}, \url{https://idm-tnmg.uspto.gov/id-master-list-public.html} (last accessed Oct. 10, 2019). The ID Manual can be used to identify how particular goods and services related to surveillance are likely to be phrased; those phrases can then be searched using TESS.

\textsuperscript{46} TMEP 1402.04. Applicants may create their own goods and services descriptions, but trademark examiners may take issue with the specificity of the description or disagree that a particular description is consistent with the identified class. In that case, the examiner may issue an “Office Action” to the applicant suggesting revisions to the existing description or requesting revisions from the applicant. \textit{See TMEP 705.}

\textsuperscript{47} \textit{See generally} TMEP 705.

\textsuperscript{48} \textit{See} Trademark Electronic Search System (TESS), \url{http://tmsearch.uspto.gov/bin/gate.exe?f=tess&state=4802:hy1kr4.1.1} (last accessed Oct. 10, 2019).

\textsuperscript{49} Trademark Electronic Search System (TESS), Structured Search, \url{http://tmsearch.uspto.gov/bin/gate.exe?f=searchstr&state=4802:hy1kr4.1.1} (last accessed Oct. 10, 2019). Note that classes must be stylized to three digits, such that a search for Class 9 would require entering “009” as the Search Term. \textit{Id.}

\textsuperscript{50} Trademark Electronic Search System (TESS), Structured Search, \url{http://tmsearch.uspto.gov/bin/gate.exe?f=searchstr&state=4802:hy1kr4.1.1} (last accessed Oct. 10, 2019). I am working with a Georgetown Law student to create a tool that automates this process and generates an update when a trademark application containing “surveillance” in the goods and services description is filed.
technologies that may be used by law enforcement, such as the AMAZON RING application.\textsuperscript{51}

IV. SPECIMENS

Trademark applications filed on an in-use basis must include a “specimen,” meaning some kind of label, tag, packaging or other display that shows the mark used in connection with every class described in the application.\textsuperscript{52} According to the Trademark Trial and Appeals Board, “[a]n important function of specimens in a trademark application is, manifestly, to enable the PTO to verify the statements made in the application regarding trademark use.”\textsuperscript{53} Effectively, specimens serve as visual demonstrations that the applied-for mark is used in connection with each class of goods or services identified in the federal trademark application.\textsuperscript{54}

The type of specimen varies based on the goods or services on which the mark is used. Specimens for hardware, for example, may take the form of commercial packaging.\textsuperscript{55} Specimens for software, however, are likely to take the form of a screenshot of the software interface or a website offering the software for sale.\textsuperscript{56} Although the contents of specimens are not searchable using TESS, specimens for in-use applications or registered trademarks can reveal details about surveillance

\textsuperscript{51} See AMAZON RING, Ser. No. 88075713, http://tmsearch.uspto.gov/bin/showfield?f=doc&state=4810:aa6hai.2.1 (covering, in part, “security surveillance apparatus, namely, electronic components of security systems,” “software development kits (SDKs) comprising of software development tools and software for use as an application programming interface (API) for creating software and applications related to theft-prevention and security systems, and home and business surveillance systems,” “electronic video surveillance products, namely, electronic components of security systems; global positioning navigation software for use with smart, autonomous vehicles and mobile machines for use in connection with internet of things (IoT) enabled devices,” and “Automated self-contained electronic surveillance devices that can be deployed to gather evidence or intelligence,” all in Class 9).

\textsuperscript{52} TMEP 904.03. All marks will eventually include a specimen, but specimens are only required for applications filed on an in-use basis. Id. Searching for trademark applications that include a specimen requires a Structured Search in TESS, in which the Search Term is “1A” and the Field is “Current Basis.”

\textsuperscript{53} Application of Bose Corp., 546 F.2d 897 (Cust. & Pat. App. 1976). The Federal Circuit has made similar observations. See In re Sones, 590 F.3d at 1284 (Fed. Cir. 2009) (TK).

\textsuperscript{54} TMEP 904.01. The Trademark Manual of Examining Procedure offers extensive guidance about the forms that certain specimens may take.

\textsuperscript{55} TMEP 904.03(c).

\textsuperscript{56} TMEP 904.03(e); In re Azteca Sys., Inc. 102 USPQ2d 1955 (TTAB 2012). Screenshots of websites merely advertising the software are insufficient as specimens. TMEP 904.03(e). Similarly, displays associated with goods, including advertising and promotional materials, are not “per se ‘displays’” that qualify as sufficient specimens. See 904.03(g).
technologies, from the physical configuration of surveillance hardware, to the features of surveillance software, to the location of law enforcement customers.

V. REVEALING DISCLOSURES IN TRADEMARK FILINGS FOR SURVEILLANCE TECHNOLOGIES

Revealing a surveillance technology using federal trademark filings opens new avenues for journalists, researchers, and civil society to leverage those disclosures. One may discover that a surveillance technology is in development before there has been a public announcement. One may uncover a surveillance technology whose existence has been obfuscated by non-disclosure agreements between a company and law enforcement. One may find that the maker of a surveillance technology potentially exposed personal information about a target publicly. Or one may unearth the terms of the financial arrangement between a company and law enforcement. Each revelation presents a new opportunity to bring new information about surveillance technologies to light.

These use examples form the basis of three case studies of Harris Corporation’s STINGRAY mark, Vigilant Solution’s VIGILANT SOLUTIONS mark, and PredPol’s PREDPOL mark. This Part explores these case studies using real trademark filings to illustrate how trademarks can be a source of transparency about surveillance technology, even when other transparency mechanisms fall short.

E. STINGRAY: Cell-Site Location Information Interceptors

Modern mobile phones disclose a significant amount of sensitive personal information, from who we call and how long we talk to them to our real-time locations. With that wealth of information at the ready, it is not surprising that law enforcement has an interest in capturing these details at the source. Enter cell-site location information interceptors, or CSLI interceptors. CSLI interceptors mimic cell phone communications towers in such a way that all nearby cell phones,

---

57 *Infra* Part II.A.
58 *Infra* Part II.B. and Part II.C.
59 See, e.g., SHOTSPOTTER, Reg. No. 3896150, Specimen (Feb. 25, 2016) (featuring a map identifying more than 50 cities across the United States, Brazil, Panama, and the United Kingdom using ShotSpotter technology, along with the years those cities began using the technology).
60 See, e.g. Introduction.
61 *Infra* Part II.A.
62 *Infra* Part II.B.
63 *Infra* Part III.C.
65 For a discussion of the detailed information that can be revealed by CSLI, see Carpenter v. United States, 138 S. Ct. 2206 at 13 (2018).
including those of innocent passersby, are “tricked” into communicating with an interceptor rather than a cell tower operated by a telecommunications provider.66

Harris Corporation, a defense contractor based in Melbourne, Florida,67 makes one of the most popular CSLI interceptors, sold under the brand name STINGRAY.68 The Stingray device has become so popular that “stingray” is often used generically to refer to the whole class of technologies known as CSLI simulators.69 Since introducing the Stingray device, Harris Corporation has taken steps to avoid transparency about its surveillance technology. Information about Stingray devices was not available on the Harris Corporation website, and marketing materials came with warnings that distribution outside law enforcement or telecommunications firms could be a crime, punishable by up to five years in prison.70 Harris Corporation petitioned the Federal Communications Commission to prevent disclosure of Stingray user manuals in response to public records requests.71 The company even went so far as to demand that law enforcement using Stingray devices agree and adhere to strict non-disclosure agreements prohibiting

68 STINGRAY, Reg. No. 2762468 (Sept. 9, 2003). Harris Corporation makes many other pieces of surveillance technology, including DENALI (Class 9 covering, in part, “firmware installable in communications transceivers for enabling such transceivers to encrypt and decrypt information communicated via the transceivers”), Reg. No. 5628200 (Dec. 11, 2018) and KINGFISH (Class 9, covering “electronic surveillance transceivers for tracking, locating and gathering information from cellular telephones”), Reg. No. 2857227 (July 27, 2004).

[DRAFT 2/25/2020]
those agencies from disclosing any details about Harris equipment—even to judges.\textsuperscript{72}

Perhaps Harris Corporation’s dedication to avoiding transparency explains why it took some time for the first federal case to mention Stingray devices.\textsuperscript{73} In United States v. Allums, the defendant, James Edward Allums, was charged with three robberies, in part based on the CSLI of Allums’ cell phone.\textsuperscript{74} As Judge Stewart explained, the government used a phone and “another device called a Stingray, which also tracked which cell tower was the strongest at any geographical position,” to identify the location of Allums.\textsuperscript{75} The unpublished memorandum decision was released in 2009, and it took until 2014 for the American Civil Liberties Union to use public records request to obtain emails (also written in 2009) revealing that law enforcement in Florida had been misleading judges, defense counsel, and defendants about the use of Stingray devices.\textsuperscript{76}

If someone had been scanning federal trademark filings, however, the public would have known about the existence of Stingray devices nearly a decade sooner.\textsuperscript{77} On August 21, 2001, Harris Corporation filed a federal trademark application for the STINGRAY mark.\textsuperscript{78} The mark was filed with an intent-to-use


\textsuperscript{73} United States v. Allums, No. 2:08-CR-30 TS (D. Utah, Mar. 24, 2009). The Rigmaiden case, which involved a pro se defendant who successfully demonstrated that a warrantless cell-site location information interceptor was used to investigate his case, is often identified as the first case to publicly reveal the existence of Stingray devices—but the final decision, which discussed Stingray devices, was not decided until 2013. States v. Rigmaiden, 2013 WL 1932800 (D. Ariz. May 8, 2013). That said, similar devices were in use well before 2009—the Harris Corporation’s Triggerfish device was promoted as early as 1991. Stephanie K. Pell & Christopher Soghoian, A Lot More Than a Pen Register, and Less Than a Wiretap: What the Stingray Teaches Us About How Congress Should Approach Reform of Law Enforcement Surveillance Authorities, 16 YALE J. L. & TECH. 134 (2014); see also Tsutomu Shiomura, “Catching Kevin,” Wired (Feb. 1, 1996), https://www.wired.com/1996/02/catching/ (describing how a cell-site simulator was used to track hacker Kevin Mitnick, along with a Triggerfish device). The earliest trademark application for the TRIGGERFISH mark was filed in 2001. TRIGGERFISH, Reg. No. 2534253 (Jan. 29, 2002) (cancelled Oct. 31, 2008).

\textsuperscript{74} See United States v. Allums, No. 2:08-CR-30 TS at 1 (D. Utah, Mar. 24, 2009).

\textsuperscript{75} Allums, note.


\textsuperscript{78} STINGRAY, Reg. No. 2762468 (Sept. 9, 2003).
designation, with the first use date of March 2, 2003. As registered, the mark covers “multi-channel, software-defined, two-way electronic surveillance radios for authorized law enforcement agencies for interrogating, locating, tracking and gathering information from cellular telephones” in Class 9. The specimen depicts an actual Stingray device, emblazed with the logo, and depicting the inputs and outputs embedded in the device.

Using federal trademark filings, the public could have learned about the existence of CSLI interceptors nearly a decade before the first federal court decision disclosing the existence of Stingray devices.

F. VIGILANT SOLUTIONS: Automated License Plate Readers

Private corporations are regularly taking photographs of cars, trucks, and other automobiles to sell to law enforcement. These companies mount small high-speed cameras called automated license plate readers, or ALPRs, on moving police vehicles or stationary infrastructure like bridges or roads, which then photograph

---

79 STINGRAY, Reg. No. 2762468 (Sept. 9, 2003).
80 STINGRAY, Reg. No. 2762468 (Sept. 9, 2003).
81 STINGRAY, Reg. No. 2762468, Specimen (June 18, 2003). Note that the specimen was the second specimen submitted; the prior specimen borders on illegible due to the quality of the images included. See STINGRAY, Reg. No. 2762468 (June 5, 2003).
up to thousands of license plates per minute. The photographs are then stored in searchable databases used by law enforcement. According to the International Association of Chiefs of Police, law enforcement agencies can use ALPRs to “enhance their enforcement and investigative capabilities, expand their collection of relevant data, and expedite the tedious and time consuming [sic] process of comparing vehicle license plates with lists of stolen, wanted, and other vehicles of interest.” ALPRs also enable surveillance by empowering law enforcement to track a single vehicle across cities and states with no suspicion of wrongdoing—a task that would be challenging, if not impossible, for someone peeking out of a window and jotting down license plate numbers.

ALPR databases can be abused. In 2016, for example, a Washington D.C. police officer pleaded guilty to extortion after blackmailing car owners whose vehicles were identified near a gay bar. The year before, a SWAT team mistakenly raided a man’s house searching for a marijuana-growing operation because of license plate monitoring at a garden store but found no evidence of such an operation. And the year before that, police removed a woman from her car at


[DRAFT 2/25/2020]
gunpoint on the mistaken belief that she was driving a stolen car after a license plate reader had misread her plates.\textsuperscript{90}

Most states do not regulate ALPRs.\textsuperscript{91} But sixteen states, including California, Florida, Maryland, and Vermont, do have laws regarding license plate readers and data retention.\textsuperscript{92} These laws can still be insufficient to deter misconduct. Just this year, a California auditor discovered widespread issues with use of license plate readers across in the state, from insecurely storing data to sharing images with thousands of entities across the United States without determining whether those entities had a right or need to access the images.\textsuperscript{93}

One of the leading ALPR vendors is Vigilant Solutions, a company based in Livermore, California.\textsuperscript{94} Vigilant Solutions takes information that can be unwieldy to manage and collect—like photographs of license plates—and assembles that information into databases for private clients.\textsuperscript{95} In its marketing materials, Vigilant Solutions advertises that its license plate recognition cameras take photographs of license plates along with the date, time, and GPS coordinates of where a particular vehicle was photographed.\textsuperscript{96} Chris Metexas, a chief executive for Vigilant Solutions subsidiary DRN, compared the company’s work to “a guy holding his head out the window, looking down the block, and writing license-plate numbers down and comparing them against a list. The technology just makes...
things better and more productive.” Vigilant Solutions’ technology certainly makes surveillance easier: Vigilant Solutions advertises that its commercial dataset offers more than 5 billion license plate detections, with more than 150 million plates added each month.

Discovering information about ALPRs can be challenging. In 2018, the Electronic Frontier Foundation (EFF) used public records requests to find out more information about the procurement and deployment of ALPRs. EFF partnered with Muckrock—a nonprofit organization dedicated to public records requests—to file a series of requests to gather details about more than 200 cities’ ALPR programs. Responses to these requests revealed that fewer than 1% of the 2.5 billion license plates scanned in the years 2016 and 2017 were linked to cars under any suspicion at the time the plates were captured. EFF concluded that law enforcement agencies shared their data with a minimum of 160 other agencies, all through Vigilant Solutions’ LEARN program, an acronym for Law Enforcement Archival and Reporting Network.

Vigilant Solutions has two federally registered trademarks. One is a design mark for a three-part disjointed V with the words VIGILANT SOLUTIONS stacked on top of one another to the right of the V, was filed on June 26, 2014. The VIGILANT SOLUTIONS design mark covers “computer hardware and software in the fields of law enforcement and crime prevention for identifying human faces and vehicle license plates, for tracking vehicles over time and

---

98 Id.
102 VIGILANT SOLUTIONS, Reg. No. 4780381 (July 28, 2015).
geographic location, and for producing reports on the movements of specific vehicles” in Class 9.103

But it’s the VIGILANT SOLUTIONS specimen that is especially revealing: it features what appears to be authentic geolocation data linked to real license plate numbers:

Applicant: Vigilant Solutions, Inc.
Mark: VIGILANT SOLUTIONS & V Design

Vigilant Solutions appears to have submitted an image from its LEARN database depicting four license plate numbers, all of which are clearly visible in the specimen.104 The specimen also appears to reveal the precise latitude and longitude data for a specific license plate number.105 According to the specimen, the plate was identified through private data and a private system on Dam Neck Road in Virginia Beach, Virginia.106 The specimen includes a visualization of the location.107

The other, earlier registration is for the image of a disjointed V, filed on August 13, 2013.108 The mark covers “[c]omputer hardware and software in the fields of security and law enforcement for tracking vehicles over time and geographic

---

103 VIGILANT SOLUTIONS, Reg. No. 4780381 (July 28, 2015).
104 VIGILANT SOLUTIONS, Reg. No. 4780381, Specimen (June 26, 2014).
105 VIGILANT SOLUTIONS, Reg. No. 4780381, Specimen (June 26, 2014).
106 VIGILANT SOLUTIONS, Reg. No. 4780381, Specimen (June 26, 2014).
107 VIGILANT SOLUTIONS, Reg. No. 4780381, Specimen (June 26, 2014).
location and for producing reports on the movements of specific vehicles” in Class 9.109

The specimen appears to show an interface for a “Vigilant Stakeout - Report” and depicts an exact address in Homestead, Florida.110 Visit number 21 is highlighted with 531 plates scanned, but the target plate does not appear to have been scanned.111 The bottom of the specimen features five images of car bumpers, each featuring their respective license plate numbers, as well as the date and time the cars were scanned.112

Applicant: Vigilant Solutions, Inc.
Mark: V & design

Vigilant Solutions’ trademark filings offer an additional approach to surveillance transparency, in which the public reveals that a company may have failed to protect the sensitive information that it collects.113 There has already been backlash to the deployment of ALPRs in communities without public approval, and these specimens may further fuel transparency by offering journalists and civil liberties organizations an alarming new talking point.

G. PREDPOL: Predictive Policing Algorithms

113 Supra note TK.
Predictive policing, as Andrew Guthrie Ferguson describes it, “involves computer models that predict future crime locations from past crime statistics and other data.”\(^{114}\) PredPol describes itself as the market leader in predictive policing technology.\(^{115}\) The “past crime statistics and other data” used by PredPol are victimization data, meaning crimes that have been reported to law enforcement.\(^{116}\)

PredPol is not without controversy. Relying on crime data that reflects systemic bias as training data, so-called “dirty data,” may have the effect of amplifying those biases.\(^{117}\) PredPol is a private company, developed from research conducted by the University of California, Los Angeles and the Los Angeles Police Department,\(^{118}\) but only individuals who have financial interests in PredPol have conducted research on the company’s methodology.\(^{119}\)

Some jurisdictions, like the Los Angeles Police Department, have been candid and forthcoming about their use of PredPol algorithms to evaluate crimes. Others have been far less transparent. In 2018, a security researcher used a series of domain-name logins to identify a dozen cities with previously undisclosed relationships with PredPol.\(^{120}\) Two researchers sent public records requests to eleven police departments—eight declined to respond or acknowledged the


\(^{115}\) Overview, PredPol, https://www.predpol.com/about/ (last accessed Mar. 18, 2019).


request without producing any responsive documents.\textsuperscript{121} One city stated that “[t]he City Attorney has advised that information revealing surveillance techniques, procedures or personnel is exempt from public inspection pursuant to S. 119.071(2)(d), Florida statutes.”\textsuperscript{122} Neither investigation revealed a relationship between PredPol and the city of Richmond, California, a small city in the East Bay.\textsuperscript{123}

Richmond’s contract with PredPol was not a secret,\textsuperscript{124} but the details were revealed somewhere else: federal trademark filings.\textsuperscript{125} PredPol filed a trademark application for the PREDPOL mark on February 2, 2012 covering, in part, “computer software for use in law enforcement and related business, namely, computer software used for use in the analysis and determination of probable locations where crimes will be committed with information delivery through browser and portable device applications and map overlays” in Class 9.\textsuperscript{126}

On December 13, 2012, PredPol submitted a specimen showing the PREDPOL mark as used in commerce.\textsuperscript{127} The majority of the specimen appears to be marketing materials explaining the mechanics of how PredPol works and the ways in which it can benefit law enforcement.\textsuperscript{128} But, beginning on the third page, PredPol submitted a contract that lays out the proposed terms for a PREDPOL software deployment for the city of “Richmond, CA.”\textsuperscript{129} The contract begins by explaining that “PredPol is glad to be working with you on decreasing the City’s crime and looks forward to a very productive and successful relationship.”\textsuperscript{130}

\textsuperscript{125} PREDPOL, Reg. No. 4299222 (Mar. 5, 2013).
\textsuperscript{126} PREDPOL, Reg. No. 4299222 (Mar. 5, 2013).
\textsuperscript{127} PREDPOL, Reg. No. 4299222, Specimen (Dec. 13, 2012). The specimen also reveals the cell phone number of someone who appears to be a PredPol employee, which is why it is not included in this Essay.
\textsuperscript{128} PREDPOL, Reg. No. 4299222, Specimen (Dec. 13, 2012).
\textsuperscript{129} PREDPOL, Reg. No. 4299222, Specimen (Dec. 13, 2012).
\textsuperscript{130} PREDPOL, Reg. No. 4299222, Specimen (Dec. 13, 2012).
The contract is dated August 2, 2012, and it identifies the financial parameters for the agreement. It states that the “list price for a municipality the size of Columbia is $75,000” and the “setup fee is…$15,000.” The contract appears to provide Richmond with two discounts: “Columbia [sic] will receive a 33% discount on the annual subscription fee for PredPol, to $50,000 per year” and the “setup fee will be waived.” The term of the subscription is three years. There is also a provision providing that “[a]dditional discounts in subsequent years based on deployment of the tool across other, adjacent jurisdictions are available.”

The most shocking term of the contract is Richmond’s agreement to support PredPol and its work in exchange for the discounted pricing. The contract states that “City agrees to reasonably support PredPol’s research and development by doing the following, during the term of this Agreement…[p]rovide public testimonials and referrals to other agencies” and “[e]ngage in reasonable joint/integrated marketing, including but not limited to press conferences and media relations, training materials, marketing, tradeshows, conferences, speaking engagements and research.” If any of the previously mentioned support would “involve costs to the City outside of their normal costs for employees performing their normal job duties, PredPol agrees to reimburse City for such costs. For example, if a Chief is requested to attend and speak at a conference of Police Chiefs to which they are not already traveling, PredPol agrees to reimburse City for travel expenses, if requested.” The document is marked “CONFIDENTIAL” at the bottom.

Despite its apparent contractual agreement to support PredPol, the Richmond Police Department terminated its relationship with the company in 2016, midway through a multi-year contract, because the city found that there was no measurable impact on crime reduction. It does not yet appear that journalists and civil liberties organizations have filed public records requests to determine whether Richmond received any additional discounts on its PredPol contract or took

---

132 PREDPOL, Reg. No. 4299222, Specimen (Dec. 13, 2012). The city of Columbia is referenced at several points in the contract; it is not clear why one reference is comparative and the other appears to be a mistake in the contract.

[DRAFT 2/25/2020]
advantage of PredPol’s offer to reimburse travel expenses in exchange for “reasonably supporting” PredPol’s research and development.

VI. CONCLUSION

Surveillance transparency is tricky, but we need it more than ever. How can we resist surveillance technologies, created by corporations and embraced by law enforcement, when we are not aware of the threats? Using federal trademark filings to investigate existing and future surveillance technologies offers journalists, researchers, and civil society the opportunity to better understand dangerous surveillance technologies and, hopefully, energize the public to mount a resistance. By using federal trademark filings for surveillance transparency, we can adopt one more way to resist an entrenched power dynamic: the watched can become watchers.